使用回溯法解批处理作业调度问题<算法分析>
一、实验内容及要求
1.要求用回溯法原理求解问题;
2.要求手工输入t1[10]及t2[10],t1[i]是任务i在机器1上的执行时间,t2[i]是任务i在机器2上的执行时间;
3.求出最优批处理作业调度总时间及作业安排顺序。
二、实验步骤
1、手工输入任务执行时间数组;
2、输出作业总时间和作业的安排顺序。
package saunfafenxi;
import java.util.Scanner;
public class shiyan5 {
static int worknum=3; //作业总数
static int[] T1 = new int[worknum]; //第i个任务在机器一上面执行的时间
static int[] T2 = new int[worknum]; //第i个任务在机器一上面执行的时间
static int[] jieguo = new int[worknum]; //保存结果的辅助数组
static int[][] mission2 = new int[worknum][2];//第i个任务在机器一上面执行的时间
int bestFinishtime = Integer.MAX_VALUE; //最短时间
int[] schedule = {0,1,2}; //默认的策略顺序。
int[] bestSchedule = new int[worknum]; //最佳顺序
int[] f2 = new int[worknum]; //第二台机器的每个任务的结束时间
int f1,totaltime; //f1当前任务的结束时间,f2的总时间
public void swap(int[] str,int m,int n){
int temp = str[m];
str[m] = str[n];
str[n] = temp;
}
public void BackTrack(int t){ //当搜索到叶子节点后,将这次遍历的策略赋值到最佳策略。
if(t>worknum-1){
bestFinishtime = totaltime;
for(int i=0;i<worknum;i++)
bestSchedule[i] = schedule[i];
return;
}
for(int i=t;i<worknum;i++){ //下面执行的是第t次的任务,全部遍历剩下的可能性。
f1+=mission2[schedule[i]][0];
if(t==0)
f2[t]=f1+mission2[schedule[i]][1];
else
f2[t] = ((f2[t-1]>f1)?f2[t-1]:f1)+mission2[schedule[i]][1];
totaltime += f2[t];
//如果该作业处理完之后,总时间已经超过最优时间,就直接回溯。
if(totaltime<bestFinishtime){
swap(schedule,t,i); //把选择出的原来在i位置上的任务序号调到当前执行的位置t
BackTrack(t+1);
swap(schedule,t,i); //进行回溯,还原,执行该层的下一个任务。
}
f1 -= mission2[schedule[i]][0];
totaltime -= f2[t];
}
}
public static void main(String[] args){
Scanner in_t1 = new Scanner(System.in);
System.out.println("请输入各任务在机器1上的执行时间:"); //循环输入T1数组
for(int i=0;i<worknum;i++){
T1[i]=in_t1.nextInt();} System.out.println("请输入各任务在机器2上的执行时间:"); //循环输入T2数组
for(int i=0;i<worknum;i++){
T2[i]=in_t1.nextInt();}
System.out.println("|\t\t-----各个作业所需时间如下----\t\t|");
System.out.println("|\t作业\t|\t机器1\t|\t机器2\t|");
for(int i=0;i<worknum;i++){
int s=i+1;
System.out.println("|\t作业"+s+"\t|\t"+T1[i]+"\t|\t"+T2[i]+"\t|"); //循环输出T1数组
}
for(int i=0;i<worknum;i++){ //各个任务所需时间的二维数组
mission2[i][0]=T1[i];
mission2[i][1]=T2[i];
}
shiyan5 bs = new shiyan5();
bs.BackTrack(0);
System.out.println("\n\n使用回溯得出的作业安排顺序如下:");
for(int i=0;i<worknum;i++){
jieguo[i]=bs.bestSchedule[i]+1;
System.out.print("任务"+jieguo[i]+"\n");}
System.out.println("作业完成的总时间是"+bs.bestFinishtime);
}
} 结果截图:
使用回溯法解批处理作业调度问题<算法分析>的更多相关文章
- 回溯法解n皇后问题
#include<bits/stdc++.h> using namespace std; int n,sum; int c[100]; void search(int cur){ if(c ...
- 回溯法最优装载问题(java)
1.问题描述: 有一批共有 n 个集装箱要装上两艘载重量分别为 c1 和 c2 的轮船,其中集装箱 i 的重量为 w[i], 且重量之和小于(c1 + c2).装载问题要求确定是否存在一个合 ...
- 回溯法 | 旅行商问题(TSP问题)
学习链接: 回溯法解旅行商问题(TSP).贪心算法:旅行商问题(TSP) 今天早上做了无数个梦,然后被紧紧地吸附在床上.挣扎一番后爬起来,已经是9点了.然后我开始研究旅行商问题. 在一个无向图中找到一 ...
- Java算法——回溯法
回溯法一种选优搜索法,又称试探法.利用试探性的方法,在包含问题所有解的解空间树中,将可能的结果搜索一遍,从而获得满足条件的解.搜索过程采用深度遍历策略,并随时判定结点是否满足条件要求,满足要求就继续向 ...
- python 回溯法 子集树模板 系列 —— 13、最佳作业调度问题
问题 给定 n 个作业,每一个作业都有两项子任务需要分别在两台机器上完成.每一个作业必须先由机器1 处理,然后由机器2处理. 试设计一个算法找出完成这n个任务的最佳调度,使其机器2完成各作业时间之和达 ...
- Leetcode之回溯法专题-37. 解数独(Sudoku Solver)
Leetcode之回溯法专题-37. 解数独(Sudoku Solver) 编写一个程序,通过已填充的空格来解决数独问题. 一个数独的解法需遵循如下规则: 数字 1-9 在每一行只能出现一次.数字 1 ...
- 回溯法——最大团问题(Maximum Clique Problem, MCP)
概述: 最大团问题(Maximum Clique Problem, MCP)是图论中一个经典的组合优化问题,也是一类NP完全问题.最大团问题又称为最大独立集问题(Maximum Independent ...
- 回溯法——n后问题
问题描述: 在n*n的棋盘上放置彼此不受攻击的n个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n后问题等价于在n*n格的棋盘上放置n个皇后,任何2个皇后不放在同一行 ...
- python常用算法(7)——动态规划,回溯法
引言:从斐波那契数列看动态规划 斐波那契数列:Fn = Fn-1 + Fn-2 ( n = 1,2 fib(1) = fib(2) = 1) 练习:使用递归和非递归的方法来求解斐波那契数 ...
随机推荐
- 数据结构 - 顺序队列的实行(C语言)
数据结构-顺序队列的实现 1 顺序队列的定义 线性表有顺序存储和链式存储,队列作为一种特殊的线性表,也同样存在这两种存储方式.我们先来看队列的顺序存储结构. 队列的顺序储存结构:用数组存储队列,为了避 ...
- [ZOJ1961]Let it Bead
Description "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. ...
- ACM_给你100块钱
给你100块钱 Time Limit: 2000/1000ms (Java/Others) Problem Description: 小光见到昨晚旭能神没拿到一血,又损失了一百块,很同情他.但是为了不 ...
- Linux环境下Apache反向代理金蝶中间件Apusic集群
操作系统:RedHat Enterprise Linux 5.6 文档参考:<金蝶Apusic应用服务器 帮助手册| IX. Apusic Http Server使用指南> 一.金蝶中间件 ...
- Android网络连接判断与检测
转自: http://www.cnblogs.com/qingblog/archive/2012/07/19/2598983.html 本文主要内容: 1)判断是否有网络连接 2)判断WIFI网络是否 ...
- Kali linux 2016.2(Rolling)里安装中文输入法
写在前面的话 关于中文输入法,实在是有太多了.当然,你也不可以不安装,(安装了增强工具即可),在windows 里输入中文,复制进去即可. 但是呢,想成为高手,还是要学会安装和使用各版本的中文输入法. ...
- rsync常见错误
rsync使用时的常见问题: 错误1: rsync: read error: Connection reset by peer (104) rsync error: error in rsync pr ...
- Oracle中默认创建的表
安装Oracle数据库后,会自动创建几个表.分别是emp.dept.bonus(也有可能不一样),这些表都在scott账户中.
- [转]Sublime Text操作
原文地址:http://www.madongdong.me/sublime-text3%E4%BD%BF%E7%94%A8%E6%8C%87%E5%8D%97/ 作者:马东东 前言(Prologue) ...
- spring.net应用
经过一段时间的调试,终于把spring.net中关于aop的方面给做个了一个比较完整的Demo.包含异常日志和性能日志.spring.net和log4net配置. http://files.cnblo ...