洛谷 4364 [九省联考2018]IIIDX
【题解】
一眼可以想到一个类似二叉树后序遍历的贪心做法,然而这个做法在有相同数字的情况下是错误的。最简单的反例就是n=4,d={1,1,1,2},正解是1,1,2,1,而贪心是1,1,1,2. 所以这个贪心被叉掉了。
我们先把d从大到小排序,然后我们用f[i]表示第i个位置之前(包括i位置)还能取的数的个数。第一个节点显然去第size[1]大的数字就好,如果有多个相等的,那么就取最右边的,因为这可以为后面的节点预留更大的数。当取好一个点的值之后,需要给它的子树预留数字;我们并不能确定子树中的每个节点分别取什么值,但是我们知道子树取的数字一定大于当前节点的数值,所以子树取的值一定在当前节点的数字前面。我们只需要把当前位置及其右边的f[i]减去size即可。每次需要确定一个节点i的取值时,我们只需要找到最大的数值val满足val所在位置右边的c[j]都大于size[i],如果有多个相等的val,我们还是取最右边的那个。要找到这样的val,我们在线段树上二分就可以了。
需要注意的是,在计算到某个父亲的第一个孩子时,我们需要把父亲预留的位置加回来。
#include<cstdio>
#include<algorithm>
#define N 500010
#define rg register
#define ls (u<<1)
#define rs (u<<1|1)
using namespace std;
int n,m,d[N],siz[N],pos[N],cnt[N];
double k;
struct tree{
int l,r,del,mn;
}a[N<<];
inline int read(){
int k=,f=; char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(''<=c&&c<='')k=k*+c-'',c=getchar();
return k*f;
}
inline int min(int x,int y){return x<y?x:y;}
inline bool cmp(int x,int y){return x>y;}
void build(int u,int l,int r){
a[u].l=l; a[u].r=r; int mid=(l+r)>>;
if(l<r) build(ls,l,mid),build(rs,mid+,r),a[u].mn=min(a[ls].mn,a[rs].mn);
else a[u].mn=l;
}
inline void pushdown(int u){
int d=a[u].del; a[u].del=;
a[ls].del+=d; a[rs].del+=d;
a[ls].mn+=d; a[rs].mn+=d;
}
void update(int u,int l,int d){
if(l<=a[u].l){
a[u].mn+=d; a[u].del+=d; return;
}
if(a[u].del) pushdown(u);
update(rs,l,d);
if(l<=((a[u].l+a[u].r)>>)) update(ls,l,d);
a[u].mn=min(a[ls].mn,a[rs].mn);
}
int find(int u,int l,int r,int v) {
if (l==r) {
if (a[u].mn>=v) return l; return l+;
}
if (a[u].del) pushdown(u);
int mid=(l+r)>>;
if (a[rs].mn>=v) return find(ls,l,mid,v);
return find(rs,mid+,r,v);
}
int fa(int x) {return x/k;}
int main(){
n=read(); scanf("%lf",&k); build(,,n);
for(rg int i=;i<=n;i++) d[i]=read();
sort(d+,d++n,cmp);
for(rg int i=n-;i;i--) if(d[i]==d[i+]) cnt[i]=cnt[i+]+;
for(rg int i=n;i;i--) siz[fa(i)]+=++siz[i];
for(rg int i=;i<=n;i++){
if(fa(i)&&fa(i)!=fa(i-)) update(,pos[fa(i)],siz[fa(i)]-);
pos[i]=find(,,n,siz[i]); pos[i]+=cnt[pos[i]]; pos[i]-=cnt[pos[i]]++;
update(,pos[i],-siz[i]);
}
for(rg int i=;i<=n;i++) printf("%d ",d[pos[i]]);
return ;
}
洛谷 4364 [九省联考2018]IIIDX的更多相关文章
- 洛谷 4364 [九省联考2018]IIIDX——“预留”的思路
题目:https://www.luogu.org/problemnew/show/P4364 原来想了一个错误的思路,就是这样: solve( cr , l , r ) 表示 cr 为根的子树填 [ ...
- 洛谷P4364 [九省联考2018]IIIDX 【线段树】
题目 [题目背景] Osu听过没?那是Konano最喜欢的一款音乐游戏,而他的梦想就是有一天自己也能做个独特酷炫的音乐游戏.现在 ,他在世界知名游戏公司KONMAI内工作,离他的梦想也越来越近了.这款 ...
- 洛谷P4364 [九省联考2018]IIIDX(线段树)
传送门 题解看得……很……迷? 因为取完一个数后,它的子树中只能取权值小于等于它的数.我们先把权值从大到小排序,然后记$a_i$为他左边(包括自己)所有取完他还能取的数的个数.那么当取完一个点$x$的 ...
- 洛谷 P4363 [九省联考2018]一双木棋chess 解题报告
P4363 [九省联考2018]一双木棋chess 题目描述 菲菲和牛牛在一块\(n\)行\(m\)列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落 ...
- 洛谷P4363 [九省联考2018]一双木棋chess 【状压dp】
题目 菲菲和牛牛在一块n 行m 列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结束. 落子的规则是:一个格子可以落子当且仅当这个 ...
- 洛谷 P4363 [九省联考2018]一双木棋chess 题解
题目链接:https://www.luogu.org/problemnew/show/P4363 分析: 首先博弈,然后考虑棋盘的规则,因为一个子在落下时它的上面和左面都已经没有空位了,所以棋子的右下 ...
- [luogu] P4364 [九省联考2018]IIIDX(贪心)
P4364 [九省联考2018]IIIDX 题目背景 Osu 听过没?那是Konano 最喜欢的一款音乐游戏,而他的梦想就是有一天自己也能做个独特酷炫的音乐游戏.现在,他在世界知名游戏公司KONMAI ...
- 洛谷P4382 [八省联考2018]劈配(网络流,二分答案)
洛谷题目传送门 说不定比官方sol里的某理论最优算法还优秀一点? 所以\(n,m\)说不定可以出到\(1000\)? 无所谓啦,反正是个得分题.Orz良心出题人,暴力有70分2333 思路分析 正解的 ...
- BZOJ.5249.[九省联考2018]iiidx(贪心 线段树)
BZOJ LOJ 洛谷 \(d_i\)不同就不用说了,建出树来\(DFS\)一遍. 对于\(d_i\)不同的情况: Solution 1: xxy tql! 考虑如何把这些数依次填到树里. 首先对于已 ...
随机推荐
- bzoj4810
http://www.lydsy.com/JudgeOnline/problem.php?id=4810 问题就在于怎么快速查询 我们先用莫队转移,但是没办法快速地查询,那么我们就用bitset这个东 ...
- Linux的文件搜索命令(locate ,find,grep,find命令和)
刚开始学Linux,这是关于Linux文件搜索命令,就目前,尽我所能把他写全一点,后期随时补充 文件搜索命令 一.locate命令 二.find命令 三.grep命令 四.find命令和grep命令的 ...
- bzoj 1578: [Usaco2009 Feb]Stock Market 股票市场【背包】
参考:https://blog.csdn.net/mars_ch/article/details/53011234 我背包真是好不熟练啊-- 第一天买了第三天卖相当于第一天买了第二天卖第二天再买第三天 ...
- java程序死锁,3种方式快速找到死锁代码
java程序中出现死锁问题,如果不了解排查方法,是束手无策的,今天咱们用三种方法找到死锁问题. 运行下面代码 package com.jvm.visualvm; /** * <a href=&q ...
- [Qt Creator 快速入门] 第1章 Qt Creator简介
Qt Creator 是一个跨平台的.完整的 Qt 集成开发环境,其中包括了高级C++代码编辑器.项目和生成管理工具.集成的上下文相关的帮助系统.图形化调试器.代码管理和浏览工具等.这一章先对 Qt ...
- Android 性能优化(11)网络优化( 7)Optimizing for Doze and App Standby
Optimizing for Doze and App Standby In this document Understanding Doze Doze restrictions Adapting y ...
- 22 C#中的异常处理入门 try catch throw
软件运行过程中,如果出现了软件正常运行不应该出现的情况,软件就出现了异常.这时候我们需要去处理这些异常.或者让程序终止,避免出现更严重的错误.或者提示用户进行某些更改让程序可以继续运行下去. C#编程 ...
- P1400 塔
题目描述 有N(2<=N<=600000)块砖,要搭一个N层的塔,要求:如果砖A在砖B上面,那么A不能比B的长度+D要长.问有几种方法,输出 答案 mod 1000000009的值. 输入 ...
- Android 新闻app的顶部导航栏,怎么实现动态加载?
TabLayout + viewpager 其中viewpager的适配器要继承FragmentPagerAdapter,要实现动态更新,最主要的是适配器的写法,要在数据发生变化之后清除Fragmen ...
- java树型结构的数据展现设计
在做一个需求管理的页面时,需求的展现是不限层级树型结构,需求下还可以分拆任务,页面要展现的字段有20多个,而且需求采用通用表单设计,db采用大宽表存储,有一百多个字段.目前数据量不大,第一版采用普通的 ...