[SHOI2013]超级跳马
题目描述
现有一个n 行m 列的棋盘,一只马欲从棋盘的左上角跳到右下角。每一步它向右跳奇数列,且跳到本行或相邻行。跳越期间,马不能离开棋盘。试求跳法种数mod 30011。
输入输出格式
输入格式:
仅有一行,包含两个正整数n, m,表示棋盘的规模。
输出格式:
仅有一行,包含一个整数,即跳法种数mod 30011。
输入输出样例
输入样例#1:
3 5
输出样例#1:
10
说明
对于10%的数据,1 ≤ n ≤ 10,2 ≤ m ≤ 10;
对于50%的数据,1 ≤ n ≤ 10,2 ≤ m ≤ 10^5;
对于80%的数据,1 ≤ n ≤ 10,2 ≤ m ≤ 10^9;
对于100%的数据,1 ≤ n ≤ 50,2 ≤ m ≤ 10^9。
题解
好久没写矩乘有点忘了
但是这种不难的题还是可以写出来的==
DP式子显然\(f[i][j] = (Sum[i-1][j]+Sum[i-1][j-1]+Sum[i-1][j+1])\)
那个\(Sum[i][j]\)表示的是第j行前i列的前缀和
然后这样不好做矩乘
可以用\(f[i][j]\)表示第j行前i列的前缀和
然后就是\(f[i][j] = f[i-2][j] + f[i-1][j] + f[i-1][j-1] + f[i-1][j+1]\)
但是这是个前缀和
所以\(Ans=f[m-1][n]+f[m-1][n-1]\)
这样就可以矩乘了
构造一个\((1 , n*2)\)的初始矩阵
前n个表示的是当前列的每一行的\(f[][]\)
后n个表示的是当前列的上一列的每一行的\(f[][]\)
然后转移矩阵就肥肠简单了
只需要把要转移的位置补上1就可以了
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
const int N = 105 ;
const int mod = 30011 ;
using namespace std ;
int n , m , E ;
int t[N][N] , Ans ;
struct Matrix {
int f[N][N] ;
inline Matrix () { memset(f , 0 , sizeof(f)) ; }
inline void Start() { for(int i = 1 ; i <= E ; i ++) f[i][i] = 1 ; }
inline friend Matrix operator * (Matrix a , Matrix b) {
Matrix temp ;
for(int i = 1 ; i <= E ; i ++)
for(int j = 1 ; j <= E ; j ++)
for(int k = 1 ; k <= E ; k ++)
temp.f[i][j] = (temp.f[i][j] + a.f[i][k] * b.f[k][j]) % mod ;
return temp ;
}
} st , b , Now ;
inline Matrix Fpw(Matrix Base , int k) {
Matrix temp ; temp.Start() ;
while(k) {
if(k & 1) temp = temp * Base ;
Base = Base * Base ; k >>= 1 ;
}
return temp ;
}
int main() {
cin >> n >> m ; t[1][1] = 1 ; E = (n << 1) ;
for(int i = 1 ; i <= n ; i ++) t[2][i] = (t[1][i] + t[1][i - 1] + t[1][i + 1]) % mod ;
if(m <= 3) { Ans = (t[m - 1][n] + t[m - 1][n - 1]) % mod ; printf("%d\n",Ans) ; return 0 ; }
for(int i = 1 ; i <= n ; i ++) st.f[1][i] = t[2][i] ;
for(int i = n + 1 ; i <= E ; i ++) st.f[1][i] = t[1][i - n] ;
for(int i = 1 ; i <= n ; i ++) {
b.f[i][i] = 1 ;
if(i != 1) b.f[i - 1][i] = 1 ;
if(i != n) b.f[i + 1][i] = 1 ;
b.f[i + n][i] = 1 ;
}
for(int i = n + 1 ; i <= E ; i ++) b.f[i - n][i] = 1 ;
Now = Fpw(b , m - 3) ; st = st * Now ;
Ans = (st.f[1][n] + st.f[1][n - 1]) % mod ;
cout << Ans << endl ;
return 0 ;
}
[SHOI2013]超级跳马的更多相关文章
- [BZOJ 4417][Shoi2013]超级跳马
4417: [Shoi2013]超级跳马 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 379 Solved: 230[Submit][Status ...
- 洛谷 P3990 [SHOI2013]超级跳马 解题报告
P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...
- [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化
这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...
- BZOJ4417: [Shoi2013]超级跳马
Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...
- 【BZOJ4417】: [Shoi2013]超级跳马
题目链接: 传送. 题解: 矩阵快速幂优化DP. 先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶 ...
- Luogu P3990 [SHOI2013]超级跳马
这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...
- 【bzoj4417】[Shoi2013]超级跳马 矩阵乘法
题目描述 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可行的跳法. ...
- P3990 [SHOI2013]超级跳马
传送门 首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移 \[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1 ...
- BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417 (luogu)https://www.luogu.org/prob ...
随机推荐
- 新装mvn建第一个项目报错org.apache.maven.plugins:maven-resources-plugin:2.6
1.第一次创建mvn项目会报maven-resources-plugin-2.6.jar错,原因是mvn无法自动下载这个jar包,多次删除这个目录下的C:\Users\Administrator\.m ...
- Mysql UPDATE 操作时含 Limit 注意事项
在update时,可以使用limit来设置,更新的条数,但下面这句sql语句是错误的. LIMIT ,; //错误提示:ERROR 1064 (42000): You have an error in ...
- [NOIP2007] 普及组
奖学金 模拟 开个struct排序即可 c++吼啊 /*by SilverN*/ #include<algorithm> #include<iostream> #include ...
- Codeforces713D. Animals and Puzzle
$n<=1000,m<=1000$,$n*m$的01矩阵,给$t<=1000000$个询问,每次问一个矩形中最大的1正方形的边长. 先想想不考虑“一个矩形中”的限制,那记$f(i,j ...
- onclick方法和$("").click()有不一样的地方
话说是这样的...昨天写了一个文件上传的功能,是这样的,用fastdfs上传成功后会有一个url... 然后我自己测试上传,包括在文件服务器里都能找到.. 然后就自己打包发版了,都很正常也没报错... ...
- fastcgi与cgi的区别[转载]
cgi 在2000年或更早的时候用得比较多, 以前web服务器一般只处理静态的请求,如果碰到一个动态请求怎么办呢?web服务器会根据这次请求的内容,然后会fork一个新进程来运行外部c程序 (或per ...
- EditText实时监测内容
editText.addTextChangedListener(new TextWatcher() { @Override public void beforeTextChanged(CharSequ ...
- Network-POJ3694(最小公共祖先LCA+Tarjin)
http://poj.org/problem?id=3694 这一题 为什么要找最小祖先呢 当两个节点连到一块的时候 找最小公共节点就相当于找强连通分支 再找最小公共节点的过程中直到找到 这个过 ...
- html中布局,让下一个子元素占据剩余的高度
---------------------------------------------------------------------- 原因是: height:100% 引起的, 这句话的意思是 ...
- 我在CSDN开通博客啦!
今天,我最终在CSDN开通博客啦!