商域无疆 (http://blog.csdn.net/omni360/)

本文遵循“署名-非商业用途-保持一致”创作公用协议

转载请保留此句:商域无疆 -  本博客专注于 敏捷开发及移动和物联设备研究:数据可视化、GOLANG、Html5、WEBGL、THREE.JS,否则,出自本博客的文章拒绝转载或再转载,谢谢合作。

今天把math库中最大的对象Matrix4凝视完了,发现之前好多的凝视理解的不太正确,还有好多的凝视由于马虎,好多小错误.能改的都在github上更新了,只是大概意思,临时我觉得是正确的.哈哈哈:)

下面代码是THREE.JS 源代码文件里Math/Matrix4.js文件的凝视.

很多其它更新在 : https://github.com/omni360/three.js.sourcecode/blob/master/Three.js

// File:src/math/Matrix4.js

/**
* @author mrdoob / http://mrdoob.com/
* @author supereggbert / http://www.paulbrunt.co.uk/
* @author philogb / http://blog.thejit.org/
* @author jordi_ros / http://plattsoft.com
* @author D1plo1d / http://github.com/D1plo1d
* @author alteredq / http://alteredqualia.com/
* @author mikael emtinger / http://gomo.se/
* @author timknip / http://www.floorplanner.com/
* @author bhouston / http://exocortex.com
* @author WestLangley / http://github.com/WestLangley
*/
///Matrix4对象的构造函数.用来创建一个4x4矩阵.Matrix4对象的功能函数採用
///定义构造的函数原型对象来实现,实际就是一个数组.
///
/// 使用方法: var m = new Matrix4(11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44)
/// 创建一个4x4的矩阵,事实上就是一个长度为9的数组,将參数(11, 12, 13, 21, 22, 23, 31, 32, 33, 41, 42, 43, 44)传递给数组用来初始化.
/// 一个变换矩阵能够运行随意的线形3D变换(比如,平移。旋转,缩放。切边等等)并且透视变换使用齐次坐标。 /// 脚本中非常少使用矩阵:最经常使用Vector3,Quaternion。并且Transform类的功能更简单。单纯的矩阵用于特殊情况,如设置非标准相机投影。 ///
/// NOTE: 參数 n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, 41, 42, 43, 44 代表4x4矩阵中的元素的值,n11表示矩阵的第一行,第一列的元素值
///
///<summary>Matrix4</summary>
///<param name ="n11" type="number">n11第 1 行,第 1 列的元素值</param>
///<param name ="n12" type="number">n12第 1 行,第 2 列的元素值</param>
///<param name ="n13" type="number">n13第 1 行,第 3 列的元素值</param>
///<param name ="n13" type="number">n13第 1 行,第 4 列的元素值</param>
///<param name ="n21" type="number">n21第 2 行,第 1 列的元素值</param>
///<param name ="n22" type="number">n22第 2 行,第 2 列的元素值</param>
///<param name ="n23" type="number">n23第 2 行,第 3 列的元素值</param>
///<param name ="n23" type="number">n23第 2 行,第 4 列的元素值</param>
///<param name ="n31" type="number">n31第 3 行,第 1 列的元素值</param>
///<param name ="n32" type="number">n32第 3 行,第 2 列的元素值</param>
///<param name ="n33" type="number">n33第 3 行,第 3 列的元素值</param>
///<param name ="n33" type="number">n33第 3 行,第 4 列的元素值</param>
///<param name ="n31" type="number">n31第 4 行,第 1 列的元素值</param>
///<param name ="n32" type="number">n32第 4 行,第 2 列的元素值</param>
///<param name ="n33" type="number">n33第 4 行,第 3 列的元素值</param>
///<param name ="n33" type="number">n33第 4 行,第 4 列的元素值</param>
///<returns type="Matrix4">返回新的4x4矩阵</returns>
THREE.Matrix4 = function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { this.elements = new Float32Array( 16 ); // TODO: 假设n11未定义,Matrix4将被初始化为一个单位矩阵.假设n11定义了值,直接复制该值到矩阵中.
// TODO: if n11 is undefined, then just set to identity, otherwise copy all other values into matrix
// 我们不支持semi规范的Matrix4(4x4矩阵),semi规范非常奇怪? ??(英语实在只是关)
// we should not support semi specification of Matrix4, it is just weird. var te = this.elements; te[ 0 ] = ( n11 !== undefined ) ? n11 : 1; te[ 4 ] = n12 || 0; te[ 8 ] = n13 || 0; te[ 12 ] = n14 || 0;
te[ 1 ] = n21 || 0; te[ 5 ] = ( n22 !== undefined ) ? n22 : 1; te[ 9 ] = n23 || 0; te[ 13 ] = n24 || 0;
te[ 2 ] = n31 || 0; te[ 6 ] = n32 || 0; te[ 10 ] = ( n33 !== undefined ) ? n33 : 1; te[ 14 ] = n34 || 0;
te[ 3 ] = n41 || 0; te[ 7 ] = n42 || 0; te[ 11 ] = n43 || 0; te[ 15 ] = ( n44 !== undefined ) ? n44 : 1; //初始化Matrix4(4x4矩阵)对象. };
/****************************************
****以下是Matrix4对象提供的功能函数.
****************************************/
THREE.Matrix4.prototype = { constructor: THREE.Matrix4, //构造器 /*
///set方法用来从新设置Matrix4(4x4矩阵)的元素值.并返回新的坐标值的Matrix4(4x4矩阵).
/// TODO:改动set方法,兼容 n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, 41, 42, 43, 44 參数省略支持多态.
*/
///<summary>set</summary>
///<param name ="n11" type="number">n11第 1 行,第 1 列的元素值</param>
///<param name ="n12" type="number">n12第 1 行,第 2 列的元素值</param>
///<param name ="n13" type="number">n13第 1 行,第 3 列的元素值</param>
///<param name ="n13" type="number">n13第 1 行,第 4 列的元素值</param>
///<param name ="n21" type="number">n21第 2 行,第 1 列的元素值</param>
///<param name ="n22" type="number">n22第 2 行,第 2 列的元素值</param>
///<param name ="n23" type="number">n23第 2 行,第 3 列的元素值</param>
///<param name ="n23" type="number">n23第 2 行,第 4 列的元素值</param>
///<param name ="n31" type="number">n31第 3 行,第 1 列的元素值</param>
///<param name ="n32" type="number">n32第 3 行,第 2 列的元素值</param>
///<param name ="n33" type="number">n33第 3 行,第 3 列的元素值</param>
///<param name ="n33" type="number">n33第 3 行,第 4 列的元素值</param>
///<param name ="n31" type="number">n31第 4 行,第 1 列的元素值</param>
///<param name ="n32" type="number">n32第 4 行,第 2 列的元素值</param>
///<param name ="n33" type="number">n33第 4 行,第 3 列的元素值</param>
///<param name ="n33" type="number">n33第 4 行,第 4 列的元素值</param>
///<returns type="Matrix4">返回新的4x4矩阵</returns>
set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { var te = this.elements; te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; return this; //返回新的4x4矩阵 }, /*
///identity方法用来获得一个4x4矩阵的单位矩阵
///
/// NOTE:在矩阵的乘法中。有一种矩阵起着特殊的作用,如同数的乘法中的1,我们称这样的矩阵为单位矩阵
/// 它是个方阵,从左上角到右下角的对角线(称为主对角线)上的元素均为1以外全都为0。
/// 对于单位矩阵。有AE=EA=A
*/
///<summary>identity</summary>
///<returns type="Matrix4(4x4矩阵)">返回4x4矩阵的一个单位矩阵</returns>
identity: function () { this.set( 1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1 ); return this; //返回4x4矩阵的一个单位矩阵 }, /*
///copy方法用来复制4x4矩阵的元素值.并返回新的Matrix4(4x4矩阵).
*/
///<summary>copy</summary>
///<param name ="m" type="Matrix4(4x4矩阵)">Matrix4(4x4矩阵)</param>
///<returns type="Matrix4(4x4矩阵)">返回新的Matrix4(4x4矩阵)</returns>
copy: function ( m ) { this.elements.set( m.elements ); return this; //返回新的Matrix4(4x4矩阵) }, /*
///extractPosition方法用来复制參数m(4x4矩阵)的平移分量.并返回新的Matrix4(4x4矩阵).
/// NOTE: extractPosition方法已经被重命名为.copyPosition()
*/
///<summary>extractPosition</summary>
///<param name ="m" type="Matrix4(4x4矩阵)">Matrix4(4x4矩阵)</param>
///<returns type="Matrix4(4x4矩阵)">返回新的Matrix4(4x4矩阵)</returns>
extractPosition: function ( m ) { console.warn( 'THREEMatrix4: .extractPosition() has been renamed to .copyPosition().' );
return this.copyPosition( m ); //调用copyPosition()方法,返回新的Matrix4(4x4矩阵) }, /*
///copyPosition方法用来复制參数m(4x4矩阵)的平移分量.并返回新的Matrix4(4x4矩阵).
*/
///<summary>copyPosition</summary>
///<param name ="m" type="Matrix4(4x4矩阵)">Matrix4(4x4矩阵)</param>
///<returns type="Matrix4(4x4矩阵)">返回新的Matrix4(4x4矩阵)</returns>
copyPosition: function ( m ) { var te = this.elements;
var me = m.elements; te[ 12 ] = me[ 12 ];
te[ 13 ] = me[ 13 ];
te[ 14 ] = me[ 14 ]; return this; //返回新的Matrix4(4x4矩阵) }, /*
///extractRotation方法用来提取參数m(4x4矩阵)的旋转分量.并返回新的Matrix4(4x4矩阵).
*/
///<summary>extractRotation</summary>
///<param name ="m" type="Matrix4(4x4矩阵)">Matrix4(4x4矩阵)</param>
///<returns type="Matrix4(4x4矩阵)">返回新的Matrix4(4x4矩阵)</returns>
extractRotation: function () { var v1 = new THREE.Vector3(); return function ( m ) { var te = this.elements;
var me = m.elements; var scaleX = 1 / v1.set( me[ 0 ], me[ 1 ], me[ 2 ] ).length();
var scaleY = 1 / v1.set( me[ 4 ], me[ 5 ], me[ 6 ] ).length();
var scaleZ = 1 / v1.set( me[ 8 ], me[ 9 ], me[ 10 ] ).length(); te[ 0 ] = me[ 0 ] * scaleX;
te[ 1 ] = me[ 1 ] * scaleX;
te[ 2 ] = me[ 2 ] * scaleX; te[ 4 ] = me[ 4 ] * scaleY;
te[ 5 ] = me[ 5 ] * scaleY;
te[ 6 ] = me[ 6 ] * scaleY; te[ 8 ] = me[ 8 ] * scaleZ;
te[ 9 ] = me[ 9 ] * scaleZ;
te[ 10 ] = me[ 10 ] * scaleZ; return this; //返回新的Matrix4(4x4矩阵) }; }(), /*
///applyEuler方法通过欧拉旋转(參数euler)对Matrix4(4x4矩阵)应用旋转变换.
*/
///<summary>applyEuler</summary>
///<param name ="euler" type="THREE.Euler">THREE.Euler对象,欧拉对象</param>
///<returns type="Matrix4">返回变换后的Matrix4(4x4矩阵)</returns>
makeRotationFromEuler: function ( euler ) { if ( euler instanceof THREE.Euler === false ) { console.error( 'THREE.Matrix: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' ); } var te = this.elements; var x = euler.x, y = euler.y, z = euler.z;
var a = Math.cos( x ), b = Math.sin( x );
var c = Math.cos( y ), d = Math.sin( y );
var e = Math.cos( z ), f = Math.sin( z ); if ( euler.order === 'XYZ' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e;
te[ 4 ] = - c * f;
te[ 8 ] = d; te[ 1 ] = af + be * d;
te[ 5 ] = ae - bf * d;
te[ 9 ] = - b * c; te[ 2 ] = bf - ae * d;
te[ 6 ] = be + af * d;
te[ 10 ] = a * c; } else if ( euler.order === 'YXZ' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce + df * b;
te[ 4 ] = de * b - cf;
te[ 8 ] = a * d; te[ 1 ] = a * f;
te[ 5 ] = a * e;
te[ 9 ] = - b; te[ 2 ] = cf * b - de;
te[ 6 ] = df + ce * b;
te[ 10 ] = a * c; } else if ( euler.order === 'ZXY' ) { var ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce - df * b;
te[ 4 ] = - a * f;
te[ 8 ] = de + cf * b; te[ 1 ] = cf + de * b;
te[ 5 ] = a * e;
te[ 9 ] = df - ce * b; te[ 2 ] = - a * d;
te[ 6 ] = b;
te[ 10 ] = a * c; } else if ( euler.order === 'ZYX' ) { var ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e;
te[ 4 ] = be * d - af;
te[ 8 ] = ae * d + bf; te[ 1 ] = c * f;
te[ 5 ] = bf * d + ae;
te[ 9 ] = af * d - be; te[ 2 ] = - d;
te[ 6 ] = b * c;
te[ 10 ] = a * c; } else if ( euler.order === 'YZX' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e;
te[ 4 ] = bd - ac * f;
te[ 8 ] = bc * f + ad; te[ 1 ] = f;
te[ 5 ] = a * e;
te[ 9 ] = - b * e; te[ 2 ] = - d * e;
te[ 6 ] = ad * f + bc;
te[ 10 ] = ac - bd * f; } else if ( euler.order === 'XZY' ) { var ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e;
te[ 4 ] = - f;
te[ 8 ] = d * e; te[ 1 ] = ac * f + bd;
te[ 5 ] = a * e;
te[ 9 ] = ad * f - bc; te[ 2 ] = bc * f - ad;
te[ 6 ] = b * e;
te[ 10 ] = bd * f + ac; }
//最后一列
// last column
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0; //最以下的一行
// bottom row
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1; return this; //返回变换后的Matrix4(4x4矩阵) }, /*
///setRotationFromQuaternion方法通过四元数对Matrix4(4x4矩阵)应用旋转变换.
/// NOTE: setRotationFromQuaternion()方法已经被重命名为makeRotationFromQuaternion(),这里保留是为了向下兼容.
*/
///<summary>setRotationFromQuaternion</summary>
///<param name ="q" type="Quaternion">四元数</param>
///<returns type="Matrix4(4x4矩阵)">返回新的Matrix4(4x4矩阵)</returns>
setRotationFromQuaternion: function ( q ) { console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' ); return this.makeRotationFromQuaternion( q ); //调用makeRotationFromQuaternion()方法,应用旋转变换,并返回新的Matrix4(4x4矩阵)对象. }, /*
///makeRotationFromQuaternion方法通过四元数对Matrix4(4x4矩阵)应用旋转变换.
*/
///<summary>setRotationFromQuaternion</summary>
///<param name ="q" type="Quaternion">四元数</param>
///<returns type="Matrix4(4x4矩阵)">返回新的Matrix4(4x4矩阵)</returns>
makeRotationFromQuaternion: function ( q ) { var te = this.elements; var x = q.x, y = q.y, z = q.z, w = q.w;
var x2 = x + x, y2 = y + y, z2 = z + z;
var xx = x * x2, xy = x * y2, xz = x * z2;
var yy = y * y2, yz = y * z2, zz = z * z2;
var wx = w * x2, wy = w * y2, wz = w * z2; te[ 0 ] = 1 - ( yy + zz );
te[ 4 ] = xy - wz;
te[ 8 ] = xz + wy; te[ 1 ] = xy + wz;
te[ 5 ] = 1 - ( xx + zz );
te[ 9 ] = yz - wx; te[ 2 ] = xz - wy;
te[ 6 ] = yz + wx;
te[ 10 ] = 1 - ( xx + yy ); //最后一列
// last column
te[ 3 ] = 0;
te[ 7 ] = 0;
te[ 11 ] = 0; //最后一行
// bottom row
te[ 12 ] = 0;
te[ 13 ] = 0;
te[ 14 ] = 0;
te[ 15 ] = 1; return this; //返回新的Matrix4(4x4矩阵) }, /*
///lookAt(eye,center,up)将对象设定为一个视图矩阵。參数都是Vector3对象,该矩阵仅仅会用到eye和center的相对位置。
///该视图矩阵表示,摄像机在eye位置看向center位置。且向上的向量(这一点稍后解释)为up时的视图矩阵。 ///视图矩阵又能够看做摄像机的模型矩阵,所以该函数产生的矩阵又能够表示以下变换:将物体从原点平移至位置center-eye,
///再将其旋转至向上的向量为up。向上的向量up用来固定相机,能够想象当相机固定在一点,镜头朝向固定方向的时候,
///还是能够在一个维度里自由旋转的。up向量固定相机的这个维度。
///这里的解释摘抄自:http://www.cnblogs.com/yiyezhai/archive/2012/11/29/2791319.html
*/
///<summary>lookAt</summary>
///<param name ="eye" type="Vector3">表示相机位置的Vector3三维向量</param>
///<param name ="target" type="Vector3">表示目标的Vector3三维向量</param>
///<param name ="up" type="Vector3">表示向上的Vector3三维向量</param>
///<returns type="Matrix4(4x4矩阵)">返回新的Matrix4(4x4矩阵)</returns>
lookAt: function () { var x = new THREE.Vector3();
var y = new THREE.Vector3();
var z = new THREE.Vector3(); return function ( eye, target, up ) { var te = this.elements; z.subVectors( eye, target ).normalize(); if ( z.length() === 0 ) { z.z = 1; } x.crossVectors( up, z ).normalize(); if ( x.length() === 0 ) { z.x += 0.0001;
x.crossVectors( up, z ).normalize(); } y.crossVectors( z, x ); te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x;
te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y;
te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z; return this; //返回新的Matrix4(4x4矩阵) }; }(), /*
///multiply方法用来将当前Matrix4(4x4矩阵)与參数m相乘.并返回新的Matrix4(4x4矩阵)
/// NOTE:这里仅仅接受一个參数,假设传递两个參数请使用.multiplyMatrices( a, b )方法替代,假设有两个參数会自己主动调用.multiplyMatrices( a, b )方法
*/
///<summary>multiply</summary>
///<param name ="m" type="Matrix4(4x4矩阵)">与当前对象元素值相乘的Matrix4(4x4矩阵)</param>
///<param name ="n" type="Matrix4(4x4矩阵)">推断是否有第二个參数w,假设有的话,调用.multiplyMatrices()方法</param>
///<returns type="Matrix4(4x4矩阵)">返回新的Matrix4(4x4矩阵)</returns>
multiply: function ( m, n ) { if ( n !== undefined ) { //推断是否有第二个參数w,假设有的话,调用.multiplyMatrices()方法 // NOTE:这里仅仅接受一个參数,假设传递两个參数请使用.multiplyMatrices( a, b )方法替代,
console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
return this.multiplyMatrices( m, n ); //调用.multiplyMatrices()方法,返回新的Matrix4(4x4矩阵),矩阵m和矩阵n相乘 } return this.multiplyMatrices( this, m ); //调用.multiplyMatrices()方法,返回新的Matrix4(4x4矩阵),当前矩阵和矩阵m相乘 }, /*
///multiply方法用来将矩阵a,b相乘,并返回新的Matrix4(4x4矩阵).
*/
///<summary>multiplyMatrices</summary>
///<param name ="a" type="Matrix4(4x4矩阵)">Matrix4(4x4矩阵)</param>
///<param name ="b" type="Matrix4(4x4矩阵)">Matrix4(4x4矩阵)</param>
///<returns type="Matrix4(4x4矩阵)">返回新的Matrix4(4x4矩阵)</returns>
multiplyMatrices: function ( a, b ) { var ae = a.elements;
var be = b.elements;
var te = this.elements; //将矩阵a,b相乘.
var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; //返回新的Matrix4(4x4矩阵) }, /*
///multiply方法用来将矩阵a,b相乘,并返回新Matrix4(4x4矩阵)赋值给数组对象r
*/
///<summary>multiplyMatrices</summary>
///<param name ="a" type="Matrix4(4x4矩阵)">Matrix4(4x4矩阵)</param>
///<param name ="b" type="Matrix4(4x4矩阵)">Matrix4(4x4矩阵)</param>
///<param name ="r" type="Array">数组对象</param>
///<returns type="Array">返回新Matrix4(4x4矩阵)</returns>
multiplyToArray: function ( a, b, r ) { var te = this.elements; this.multiplyMatrices( a, b ); //矩阵a,b相乘 //新Matrix4(4x4矩阵)赋值给数组对象
r[ 0 ] = te[ 0 ]; r[ 1 ] = te[ 1 ]; r[ 2 ] = te[ 2 ]; r[ 3 ] = te[ 3 ];
r[ 4 ] = te[ 4 ]; r[ 5 ] = te[ 5 ]; r[ 6 ] = te[ 6 ]; r[ 7 ] = te[ 7 ];
r[ 8 ] = te[ 8 ]; r[ 9 ] = te[ 9 ]; r[ 10 ] = te[ 10 ]; r[ 11 ] = te[ 11 ];
r[ 12 ] = te[ 12 ]; r[ 13 ] = te[ 13 ]; r[ 14 ] = te[ 14 ]; r[ 15 ] = te[ 15 ]; return this; //返回新Matrix4(4x4矩阵) }, /*
///multiplyScalar方法用来将Matrix4(4x4矩阵)的元素直接与參数s相乘.并返回新的Matrix4(4x4矩阵).
/// NOTE:这里传递的參数s是一个标量.
*/
///<summary>multiplyScalar</summary>
///<param name ="s" type="number">与当前Matrix4(4x4矩阵)对象的值相乘的标量,数值</param>
///<returns type="Matrix4">返回新的Matrix4(4x4矩阵)</returns>
multiplyScalar: function ( s ) { var te = this.elements; te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; return this; //返回新的Matrix4(4x4矩阵) }, /*
///multiplyVector3方法用来将3x3矩阵和一个Vector3(三维向量)相乘.并返回新Matrix4(4x4矩阵)对象.
/// NOTE:multiplyVector3方法已经被删除使用vector.applyMatrix4( matrix )方法替换,这里保留是为了向下兼容.
/// NOTE:multiplyVector3方法经经常使用来应用某种变换.
*/
///<summary>multiplyVector3</summary>
///<param name ="vector" type="Vector3">三维向量</param>
///<returns type="Matrix4">并返回新的Matrix4(4x4矩阵)对象</returns>
multiplyVector3: function ( vector ) { // 提示用户multiplyVector3方法已经被删除使用vector.applyMatrix4( matrix )方法替换,这里保留是为了向下兼容.
console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) or vector.applyProjection( matrix ) instead.' );
return vector.applyProjection( this ); //并返回新的Matrix4(4x4矩阵)对象 }, /*
///multiplyVector4方法用来将3x3矩阵和一个Vector4(四维向量)相乘.并返回新Matrix4(4x4矩阵)对象.
/// NOTE:multiplyVector4方法已经被删除使用vector.applyMatrix4( matrix )方法替换,这里保留是为了向下兼容.
/// NOTE:multiplyVector4方法经经常使用来应用某种变换.
*/
///<summary>multiplyVector4</summary>
///<param name ="vector" type="Vector4">四维向量</param>
///<returns type="Matrix4">并返回新的Matrix4(4x4矩阵)对象</returns>
multiplyVector4: function ( vector ) { // 提示用户multiplyVector4方法已经被删除使用vector.applyMatrix4( matrix )方法替换,这里保留是为了向下兼容.
console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
return vector.applyMatrix4( this ); //并返回新的Matrix4(4x4矩阵)对象 }, /*
///multiplyVector3Array方法用来将数组a和一个Vector3(三维向量)相乘.并返回新的数组对象.
/// NOTE:multiplyVector3Array方法已经被删除使用matrix.applyToVector3Array( array )方法替换,这里保留是为了向下兼容.
/// NOTE:multiplyVector3Array方法经经常使用来应用某种变换.
*/
///<summary>multiplyVector3Array</summary>
///<param name ="a" type="Array">数组对象</param>
///<returns type="Array">并返回新的数组对象</returns>
multiplyVector3Array: function ( a ) { // 提示用户multiplyVector3Array方法已经被删除使用matrix.applyToVector3Array( array )方法替换,这里保留是为了向下兼容.
console.warn( 'THREE.Matrix4: .multiplyVector3Array() has been renamed. Use matrix.applyToVector3Array( array ) instead.' );
return this.applyToVector3Array( a ); //并返回新的Matrix4(4x4矩阵)对象 }, /*
///applyToVector3Array方法用来将当前矩阵应用到一个三维向量,并将结果转换成一个数组,返回数组对象.
/// NOTE:applyToVector3Array方法经经常使用来对三维向量应用某种变换. 參数offset,length用来对不同长度的数组应用变换.
///
*/
///<summary>applyMatrix4</summary>
///<param name ="array" type="Array">数组对象</param>
///<param name ="offset" type="Number">偏移量</param>
///<param name ="length" type="Number">长度</param>
///<returns type="Array">并返回新的数组对象</returns>
applyToVector3Array: function () { var v1 = new THREE.Vector3(); return function ( array, offset, length ) { if ( offset === undefined ) offset = 0;
if ( length === undefined ) length = array.length; for ( var i = 0, j = offset, il; i < length; i += 3, j += 3 ) { v1.x = array[ j ];
v1.y = array[ j + 1 ];
v1.z = array[ j + 2 ]; v1.applyMatrix4( this ); array[ j ] = v1.x;
array[ j + 1 ] = v1.y;
array[ j + 2 ] = v1.z; } return array; //并返回新的数组对象 }; }(), /*
///rotateAxis方法对參数v三维向量的应用一个旋转变换
/// NOTE:rotateAxis方法已经被删除使用Vector3.transformDirection( matrix )方法替换,这里保留是为了向下兼容.
*/
///<summary>rotateAxis</summary>
///<param name ="v" type="Vector3">仿射矩阵</param>
///<returns type="Vector3">返回新坐标值的三维向量</returns>
rotateAxis: function ( v ) { //提示用户rotateAxis方法已经被删除使用Vector3.transformDirection( matrix )方法替换,这里保留是为了向下兼容.
console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' ); v.transformDirection( this ); //调用Vector3.transformDirection( matrix ) 方法,对向量应用旋转变换 }, /*crossVector方法
///crossVector方法将返回两个交叉乘积,调用者变为a,b的叉乘。 叉乘是一个向量,垂直于參与叉乘的两个向量并呈右手螺旋法则。
/// 返回为同一时候垂直于两个參数向量的向量,方向可朝上也可朝下,由两向量夹角的方向决定。 /// NOTE:crossVector方法已经被删除使用vector.applyMatrix4( matrix )方法替换,这里保留是为了向下兼容.
/// NOTE:借助右手定则辅助推断方向。參考:http://zh.wikipedia.org/zh/%E5%90%91%E9%87%8F%E7%A7%AF
/// 叉乘是一种在向量空间中向量的二元运算。与点乘不同,它的运算结果是一个伪向量而不是一个标量。
/// 叉乘的运算结果叫叉积(即交叉乘积)、外积或向量积。 叉积与原来的两个向量都垂直。 1、理论知识
数学上的定义:c=axb【注:粗体小写字母表示向量】当中a,b,c均为向量。即两个向量的叉积得到的还是向量!
性质1:c⊥a,c⊥b,即向量c垂直与向量a,b所在的平面。
性质2:模长|c|=|a||b|sin<a,b>
性质3:满足右手法则。从这点我们有axb ≠ bxa,而axb = - bxa。所以我们能够使用叉积的正负值来推断向量a,b的相对位置。
即向量b是处于向量a的顺时针方向还是逆时针方向。
*/
///<summary>crossVector</summary>
///<param name ="vector" type="Vector3">三维向量</param>
///<returns type="Vector3">三维向量</returns>
crossVector: function ( vector ) { //提示用户crossVector方法已经被删除使用vector.applyMatrix4( matrix )方法替换,这里保留是为了向下兼容.
console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
return vector.applyMatrix4( this ); //调用Vector3.applyMatrix4( matrix ) 方法,返回參数vector和当前矩阵的差乘. }, /*
///determinant方法用来获得Matrix4(4x4矩阵)的行列式
/// NOTE:通过求解行列式值的方式来推断矩阵的逆矩阵是否存在(行列式的值不等于0,表示该矩阵有逆矩阵).
*/
///<summary>determinant</summary>
///<returns type="Number">返回Matrix4(4x4矩阵)的四阶行列式</returns>
determinant: function () { var te = this.elements; var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; //TODO: make this more efficient
//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return (
n41 * (
+ n14 * n23 * n32
- n13 * n24 * n32
- n14 * n22 * n33
+ n12 * n24 * n33
+ n13 * n22 * n34
- n12 * n23 * n34
) +
n42 * (
+ n11 * n23 * n34
- n11 * n24 * n33
+ n14 * n21 * n33
- n13 * n21 * n34
+ n13 * n24 * n31
- n14 * n23 * n31
) +
n43 * (
+ n11 * n24 * n32
- n11 * n22 * n34
- n14 * n21 * n32
+ n12 * n21 * n34
+ n14 * n22 * n31
- n12 * n24 * n31
) +
n44 * (
- n13 * n22 * n31
- n11 * n23 * n32
+ n11 * n22 * n33
+ n13 * n21 * n32
- n12 * n21 * n33
+ n12 * n23 * n31
) //返回Matrix4(4x4矩阵)的四阶行列式 ); }, /*
///transpose方法用来获得Matrix4(4x4矩阵)的转置矩阵.
/// NOTE:一个mxn的矩阵的转置矩阵式nxm矩阵,就是矩阵的行和列交换.
/// 比如:
///
/// -- -- -- -- T
/// | 1 2 3 | | 1 4 7 |
/// matrix A = | 4 5 6 | = | 2 5 8 |
/// | 7 8 9 | | 3 6 9 |
/// -- -- -- --
*/
///<summary>transpose</summary>
///<returns type="Matrix4">返回Matrix4(4x4矩阵)的转置矩阵.</returns>
transpose: function () { var te = this.elements;
var tmp; tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; return this; //返回Matrix4(4x4矩阵)的转置矩阵. }, /*
///flattenToArrayOffset方法通过參数offset指定偏移量,将矩阵展开到数组(參数array)中,返回新的数组.
/// NOTE:flattenToArrayOffset方法能够用在将3x3矩阵变换成4x4矩阵中.
/// -- --
/// | 1 2 3 |
/// matrix A = | 4 5 6 | => flattenToArrayOffset(arrary,3) => array(0,0,0,0,1,2,3,0,0,0,0,4,5,6,0,0,0,0,7,8,9)
/// | 7 8 9 |
/// -- --
*/
///<summary>flattenToArrayOffset</summary>
///<param name ="array" type="Array">Array数组对象</param>
///<param name ="offset" type="Number">偏移量</param>
///<returns type="Matrix4">返回包括矩阵元素的数组</returns>
flattenToArrayOffset: function ( array, offset ) { var te = this.elements; array[ offset ] = te[ 0 ];
array[ offset + 1 ] = te[ 1 ];
array[ offset + 2 ] = te[ 2 ];
array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ];
array[ offset + 5 ] = te[ 5 ];
array[ offset + 6 ] = te[ 6 ];
array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ];
array[ offset + 9 ] = te[ 9 ];
array[ offset + 10 ] = te[ 10 ];
array[ offset + 11 ] = te[ 11 ]; array[ offset + 12 ] = te[ 12 ];
array[ offset + 13 ] = te[ 13 ];
array[ offset + 14 ] = te[ 14 ];
array[ offset + 15 ] = te[ 15 ]; return array; //返回包括矩阵元素的数组 }, /*
///getPosition方法将当前矩阵中代表位置的元素值设置给三维向量
/// NOTE:getPosition方法已经被删除使用vector.setFromMatrixPosition( matrix )方法替换,这里保留是为了向下兼容.
*/
///<summary>getPosition</summary>
///<returns type="Vector3">返回三维向量</returns>
getPosition: function () { var v1 = new THREE.Vector3(); return function () { console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' ); var te = this.elements;
return v1.set( te[ 12 ], te[ 13 ], te[ 14 ] ); //返回三维向量 }; }(), /*
///setPosition方法将当前矩阵中代表位置的元素值设置给三维向量
*/
///<summary>setPosition</summary>
///<param name ="v" type="Vector3">偏移量</param>
///<returns type="Matrix4">返回新的Matrix4(4x4矩阵)</returns>
setPosition: function ( v ) { var te = this.elements; te[ 12 ] = v.x;
te[ 13 ] = v.y;
te[ 14 ] = v.z; return this; //返回新的Matrix4(4x4矩阵) }, /*
///getInverse方法用来获得Matrix4(4x4矩阵)的逆矩阵.
/// NOTE:逆矩阵与当前矩阵相乘得到单位矩阵.
*/
///<summary>multiplyScalar</summary>
///<param name ="matrix" type="Matrix4">THREE.Matrix4</param>
///<param name ="throwOnInvertible" type="Number">异常标志</param>
///<returns type="Matrix4">返回Matrix4(4x4矩阵)的逆矩阵.</returns>
getInverse: function ( m, throwOnInvertible ) { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
var te = this.elements;
var me = m.elements; var n11 = me[ 0 ], n12 = me[ 4 ], n13 = me[ 8 ], n14 = me[ 12 ];
var n21 = me[ 1 ], n22 = me[ 5 ], n23 = me[ 9 ], n24 = me[ 13 ];
var n31 = me[ 2 ], n32 = me[ 6 ], n33 = me[ 10 ], n34 = me[ 14 ];
var n41 = me[ 3 ], n42 = me[ 7 ], n43 = me[ 11 ], n44 = me[ 15 ]; te[ 0 ] = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44;
te[ 4 ] = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44;
te[ 8 ] = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44;
te[ 12 ] = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
te[ 1 ] = n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44;
te[ 5 ] = n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44;
te[ 9 ] = n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44;
te[ 13 ] = n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34;
te[ 2 ] = n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44;
te[ 6 ] = n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44;
te[ 10 ] = n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44;
te[ 14 ] = n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34;
te[ 3 ] = n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43;
te[ 7 ] = n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43;
te[ 11 ] = n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43;
te[ 15 ] = n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33; var det = n11 * te[ 0 ] + n21 * te[ 4 ] + n31 * te[ 8 ] + n41 * te[ 12 ]; //获得參数matrix行列式的值 if ( det == 0 ) { // 没有逆矩阵 var msg = "Matrix4.getInverse(): can't invert matrix, determinant is 0"; //提示用户该矩阵没有逆矩阵 if ( throwOnInvertible || false ) { throw new Error( msg ); } else { console.warn( msg ); } this.identity(); //获得一个单位矩阵 return this; //返回单位矩阵
} this.multiplyScalar( 1 / det ); //除以行列式得到逆矩阵 return this; //返回Matrix4(4x4矩阵)的逆矩阵. }, /*
///translate方法用来变换Matrix4(4x4矩阵).
/// NOTE:translate方法已经删除.
*/
///<summary>translate</summary>
///<param name ="v" type="Vector3">THREE.Vecter3</param>
///<returns type="Matrix4">返回带有新位置信息的Matrix4(4x4矩阵).</returns>
translate: function ( v ) {
//提示用户translate()方法已经删除.
console.warn( 'THREE.Matrix4: .translate() has been removed.' ); }, /*
///rotateX方法用来变换Matrix4(4x4矩阵)的x轴.
/// NOTE:rotateX方法已经删除.
*/
///<summary>rotateX</summary>
///<param name ="angle" type="Number">角度</param>
///<returns type="Matrix4">返回带有新的Matrix4(4x4矩阵).</returns>
rotateX: function ( angle ) {
//提示用户rotateX()方法已经删除.
console.warn( 'THREE.Matrix4: .rotateX() has been removed.' ); }, /*
///rotateY方法用来变换Matrix4(4x4矩阵)的Y轴.
/// NOTE:rotateX方法已经删除.
*/
///<summary>rotateY</summary>
///<param name ="angle" type="Number">角度</param>
///<returns type="Matrix4">返回带有新的Matrix4(4x4矩阵).</returns>
rotateY: function ( angle ) {
//提示用户rotateY()方法已经删除.
console.warn( 'THREE.Matrix4: .rotateY() has been removed.' ); }, /*
///rotateZ方法用来变换Matrix4(4x4矩阵)的Z轴.
/// NOTE:rotateZ方法已经删除.
*/
///<summary>rotateZ</summary>
///<param name ="angle" type="Number">角度</param>
///<returns type="Matrix4">返回带有新的Matrix4(4x4矩阵).</returns>
rotateZ: function ( angle ) {
//提示用户rotateZ()方法已经删除.
console.warn( 'THREE.Matrix4: .rotateZ() has been removed.' ); }, /*
///rotateByAxis方法用来变换Matrix4(4x4矩阵)的随意轴.
/// NOTE:rotateByAxis方法已经删除.
*/
///<summary>rotateByAxis</summary>
///<param name ="axis" type="Vector3">随意轴</param>
///<param name ="angle" type="Number">角度</param>
///<returns type="Matrix4">返回带有新的Matrix4(4x4矩阵).</returns>
rotateByAxis: function ( axis, angle ) {
//提示用户rotateByAxis()方法已经删除.
console.warn( 'THREE.Matrix4: .rotateByAxis() has been removed.' ); }, /*
///scale方法通过预先计算比例向量,将指定的比例向量应用到此 Matrix4(4x4矩阵)。
*/
///<summary>scale</summary>
///<param name ="v" type="Vector3">比例向量Vector3</param>
///<returns type="Matrix4">返回新的Matrix4(4x4矩阵).</returns>
scale: function ( v ) { var te = this.elements;
var x = v.x, y = v.y, z = v.z; te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; return this; //返回新的Matrix4(4x4矩阵). }, getMaxScaleOnAxis: function () { var te = this.elements; var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; return Math.sqrt( Math.max( scaleXSq, Math.max( scaleYSq, scaleZSq ) ) ); }, /*
///makeTranslation方法依据x, y, z生成平移矩阵.
*/
///<summary>makeTranslation</summary>
///<param name ="x" type="Number">x分量</param>
///<param name ="y" type="Number">y分量</param>
///<param name ="z" type="Number">z分量</param>
///<returns type="Matrix4">返回Matrix4(4x4矩阵),平移矩阵.</returns>
makeTranslation: function ( x, y, z ) { this.set( 1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1 ); return this; //返回Matrix4(4x4矩阵),平移矩阵 }, /*
///makeRotationX方法生成绕x轴转theta弧度的旋转矩阵
/// TODO:这里是弧度还是角度,有待确认.
*/
///<summary>makeRotationX</summary>
///<param name ="theta" type="Number">弧度</param>
///<returns type="Matrix4">返回Matrix4(4x4矩阵),旋转矩阵.</returns>
makeRotationX: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( 1, 0, 0, 0,
0, c, - s, 0,
0, s, c, 0,
0, 0, 0, 1 ); return this; //返回Matrix4(4x4矩阵),旋转矩阵. }, /*
///makeRotationY方法生成绕y轴转theta弧度的旋转矩阵
/// TODO:这里是弧度还是角度,有待确认.
*/
///<summary>makeRotationY</summary>
///<param name ="theta" type="Number">弧度</param>
///<returns type="Matrix4">返回Matrix4(4x4矩阵),旋转矩阵.</returns>
makeRotationY: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, 0, s, 0,
0, 1, 0, 0,
- s, 0, c, 0,
0, 0, 0, 1 ); return this; //返回Matrix4(4x4矩阵),旋转矩阵. }, /*
///makeRotationZ方法生成绕z轴转theta弧度的旋转矩阵
/// TODO:这里是弧度还是角度,有待确认.
*/
///<summary>makeRotationZ</summary>
///<param name ="theta" type="Number">弧度</param>
///<returns type="Matrix4">返回Matrix4(4x4矩阵),旋转矩阵.</returns>
makeRotationZ: function ( theta ) { var c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, - s, 0, 0,
s, c, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1 ); return this; //返回Matrix4(4x4矩阵),旋转矩阵. }, /*
///makeRotationAxis方法生成绕随意轴转angle弧度的旋转矩阵
/// TODO:这里是弧度还是角度,有待确认.
*/
///<summary>makeRotationAxis</summary>
///<param name ="axis" type="Vector3"> 转轴向量(axis必须是单位向量)</param>
///<param name ="theta" type="Number">弧度</param>
///<returns type="Matrix4">返回Matrix4(4x4矩阵),旋转矩阵.</returns>
makeRotationAxis: function ( axis, angle ) { // Based on http://www.gamedev.net/reference/articles/article1199.asp var c = Math.cos( angle );
var s = Math.sin( angle );
var t = 1 - c;
var x = axis.x, y = axis.y, z = axis.z;
var tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0,
tx * y + s * z, ty * y + c, ty * z - s * x, 0,
tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
0, 0, 0, 1 ); return this; //返回Matrix4(4x4矩阵),旋转矩阵. }, /*
///makeScale方法依据x, y, z生成缩放矩阵.
*/
///<summary>makeScale</summary>
///<param name ="x" type="Number">x分量</param>
///<param name ="y" type="Number">y分量</param>
///<param name ="z" type="Number">z分量</param>
///<returns type="Matrix4">返回Matrix4(4x4矩阵),缩放矩阵.</returns>
makeScale: function ( x, y, z ) { this.set( x, 0, 0, 0,
0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1 ); return this; //返回Matrix4(4x4矩阵),缩放矩阵. }, /*
///compose方法设置变换矩阵的平移、旋转和缩放设置
*/
///<summary>compose</summary>
///<param name ="position" type="Vector3">平移向量</param>
///<param name ="quaternion" type="Vector3">旋转向量</param>
///<param name ="scale" type="Vector3">缩放向量</param>
///<returns type="Matrix4">返回Matrix4(4x4矩阵),变换矩阵.</returns>
compose: function ( position, quaternion, scale ) { this.makeRotationFromQuaternion( quaternion );
this.scale( scale );
this.setPosition( position ); return this; //返回Matrix4(4x4矩阵),变换矩阵. }, /*
///decompose方法将转换矩阵的平移、旋转和缩放设置作为由三个 Vector3 对象组成的矢量返回。 第一个 Vector3 对象容纳平移元素。 第二个 Vector3 对象容纳旋转元素。第三个 Vector3 对象容纳缩放元素。
*/
///<summary>decompose</summary>
///<param name ="position" type="Vector3">平移向量</param>
///<param name ="quaternion" type="Vector3">旋转向量</param>
///<param name ="scale" type="Vector3">缩放向量</param>
///<returns type="Matrix4">返回Matrix4(4x4矩阵),变换矩阵.</returns>
decompose: function () { var vector = new THREE.Vector3();
var matrix = new THREE.Matrix4(); return function ( position, quaternion, scale ) { var te = this.elements; var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); // if determine is negative, we need to invert one scale
// 假设行列式是负数,把比例转换成正数
var det = this.determinant();
if ( det < 0 ) {
sx = - sx;
} position.x = te[ 12 ];
position.y = te[ 13 ];
position.z = te[ 14 ]; // scale the rotation part
// 缩放有关旋转的元素 matrix.elements.set( this.elements ); // at this point matrix is incomplete so we can't use .copy()
//这个表示点的矩阵是不完整的,我们不能使用copy()方法 var invSX = 1 / sx;
var invSY = 1 / sy;
var invSZ = 1 / sz; matrix.elements[ 0 ] *= invSX;
matrix.elements[ 1 ] *= invSX;
matrix.elements[ 2 ] *= invSX; matrix.elements[ 4 ] *= invSY;
matrix.elements[ 5 ] *= invSY;
matrix.elements[ 6 ] *= invSY; matrix.elements[ 8 ] *= invSZ;
matrix.elements[ 9 ] *= invSZ;
matrix.elements[ 10 ] *= invSZ; quaternion.setFromRotationMatrix( matrix ); scale.x = sx;
scale.y = sy;
scale.z = sz; return this; //返回Matrix4(4x4矩阵),变换矩阵 }; }(), /*
///makeFrustum方法依据left, right, bottom, top, near, far生成透视投影矩阵,Frustum平截头体
*/
///<summary>makeFrustum</summary>
///<param name ="left" type="Number">指明相对于垂直平面的左側坐标位置</param>
///<param name ="right" type="Number">指明相对于垂直平面的右側坐标位置</param>
///<param name ="bottom" type="Number">指明相对于垂直平面的底部坐标位置</param>
///<param name ="top" type="Number">指明相对于垂直平面的顶部坐标位置</param>
///<param name ="near" type="Number">指明相对于深度剪切面的近的距离,必须为正数</param>
///<param name ="far" type="Number">指明相对于深度剪切面的远的距离,必须为正数</param>
///<returns type="Matrix4">返回Matrix4(4x4矩阵),透视投影矩阵.</returns>
makeFrustum: function ( left, right, bottom, top, near, far ) { var te = this.elements;
var x = 2 * near / ( right - left );
var y = 2 * near / ( top - bottom ); var a = ( right + left ) / ( right - left );
var b = ( top + bottom ) / ( top - bottom );
var c = - ( far + near ) / ( far - near );
var d = - 2 * far * near / ( far - near ); te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0;
te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = - 1; te[ 15 ] = 0; return this; //返回Matrix4(4x4矩阵),透视投影矩阵 }, /*
///makePerspective方法依据 fov, aspect, near, far 生成透视投影矩阵,对makeFrustu()方法的封装,适配人们习惯的表达方式.
*/
///<summary>makePerspective</summary>
///<param name ="fov" type="Number">指明相机的可视角度</param>
///<param name ="aspect" type="Number">指明相机可视范围的长宽比</param>
///<param name ="near" type="Number">指明相对于深度剪切面的近的距离,必须为正数</param>
///<param name ="far" type="Number">指明相对于深度剪切面的远的距离,必须为正数</param>
///<returns type="Matrix4">返回Matrix4(4x4矩阵),透视投影矩阵.</returns>
makePerspective: function ( fov, aspect, near, far ) { var ymax = near * Math.tan( THREE.Math.degToRad( fov * 0.5 ) );
var ymin = - ymax;
var xmin = ymin * aspect;
var xmax = ymax * aspect; return this.makeFrustum( xmin, xmax, ymin, ymax, near, far ); //调用makeFrustum()方法,返回透视投影矩阵. }, /*
///makeOrthographic方法依据 left, right, top, bottom, near, far 生成正交矩阵.
*/
///<summary>makePerspective</summary>
///<param name ="left" type="Number">指明相对于垂直平面的左側坐标位置</param>
///<param name ="right" type="Number">指明相对于垂直平面的右側坐标位置</param>
///<param name ="bottom" type="Number">指明相对于垂直平面的底部坐标位置</param>
///<param name ="top" type="Number">指明相对于垂直平面的顶部坐标位置</param>
///<param name ="near" type="Number">指明相对于深度剪切面的近的距离,必须为正数</param>
///<param name ="far" type="Number">指明相对于深度剪切面的远的距离,必须为正数</param>
///<returns type="Matrix4">返回Matrix4(4x4矩阵),正交投影矩阵.</returns>
makeOrthographic: function ( left, right, top, bottom, near, far ) { var te = this.elements;
var w = right - left;
var h = top - bottom;
var p = far - near; var x = ( right + left ) / w;
var y = ( top + bottom ) / h;
var z = ( far + near ) / p; te[ 0 ] = 2 / w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x;
te[ 1 ] = 0; te[ 5 ] = 2 / h; te[ 9 ] = 0; te[ 13 ] = - y;
te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = - 2 / p; te[ 14 ] = - z;
te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1; return this; //返回Matrix4(4x4矩阵),正交投影矩阵. }, /*fromArray方法
///fromArray方法将存储Matrix4(4x4矩阵)元素值的数组赋值给当前Matrix4(4x4矩阵)对象
*/
///<summary>fromArray</summary>
///<param name ="array" type="Array">Matrix4(4x4矩阵)元素值的数组array</param>
///<returns type="Matrix4">返回新的Matrix4(4x4矩阵)</returns>
fromArray: function ( array ) { this.elements.set( array ); //调用set方法,将数组赋值给当前Matrix4(4x4矩阵)对象 return this; //返回新的Matrix4(4x4矩阵) }, /*toArray方法
///toArray方法将当前Matrix4(4x4矩阵)的元素值赋值给数组array.返回一个数组对象.
*/
///<summary>toArray</summary>
///<returns type="Array">返回含有Matrix4(4x4矩阵)元素值的数组array</returns>
toArray: function () { var te = this.elements; return [
te[ 0 ], te[ 1 ], te[ 2 ], te[ 3 ],
te[ 4 ], te[ 5 ], te[ 6 ], te[ 7 ],
te[ 8 ], te[ 9 ], te[ 10 ], te[ 11 ],
te[ 12 ], te[ 13 ], te[ 14 ], te[ 15 ]
]; //返回含有Matrix4(4x4矩阵)元素值的数组array }, /*clone方法
///clone方法克隆一个Matrix4(4x4矩阵)对象.
*/
///<summary>clone</summary>
///<returns type="Matrix4(4x4矩阵)">返回克隆的Matrix4(4x4矩阵)对象</returns>
clone: function () { var te = this.elements; return new THREE.Matrix4( te[ 0 ], te[ 4 ], te[ 8 ], te[ 12 ],
te[ 1 ], te[ 5 ], te[ 9 ], te[ 13 ],
te[ 2 ], te[ 6 ], te[ 10 ], te[ 14 ],
te[ 3 ], te[ 7 ], te[ 11 ], te[ 15 ] ); //返回克隆的Matrix4(4x4矩阵)对象 } };

商域无疆 (http://blog.csdn.net/omni360/)

本文遵循“署名-非商业用途-保持一致”创作公用协议

转载请保留此句:商域无疆 -  本博客专注于 敏捷开发及移动和物联设备研究:数据可视化、GOLANG、Html5、WEBGL、THREE.JS,否则。出自本博客的文章拒绝转载或再转载,谢谢合作。

下面代码是THREE.JS 源代码文件里Math/Matrix4.js文件的凝视.

很多其它更新在 : https://github.com/omni360/three.js.sourcecode/blob/master/Three.js

three.js 源代码凝视(九)Math/Matrix4.js的更多相关文章

  1. three.js 源代码凝视(十四)Math/Sphere.js

    商域无疆 (http://blog.csdn.net/omni360/) 本文遵循"署名-非商业用途-保持一致"创作公用协议 转载请保留此句:商域无疆 -  本博客专注于 敏捷开发 ...

  2. three.js 源代码凝视(十)Math/Line3.js

    商域无疆 (http://blog.csdn.net/omni360/) 本文遵循"署名-非商业用途-保持一致"创作公用协议 转载请保留此句:商域无疆 -  本博客专注于 敏捷开发 ...

  3. three.js 源代码凝视(十六)Math/Frustum.js

    商域无疆 (http://blog.csdn.net/omni360/) 本文遵循"署名-非商业用途-保持一致"创作公用协议 转载请保留此句:商域无疆 -  本博客专注于 敏捷开发 ...

  4. three.js 源代码凝视(十五)Math/Plane.js

    商域无疆 (http://blog.csdn.net/omni360/) 本文遵循"署名-非商业用途-保持一致"创作公用协议 转载请保留此句:商域无疆 -  本博客专注于 敏捷开发 ...

  5. three.js 源代码凝视(七)Math/Euler.js

    商域无疆 (http://blog.csdn.net/omni360/) 本文遵循"署名-非商业用途-保持一致"创作公用协议 转载请保留此句:商域无疆 -  本博客专注于 敏捷开发 ...

  6. js 技巧 (九)按键JS

    1. 禁止复制(copy),禁用鼠标右键! <SCRIPT> //加入页面保护 function rf() {return false; } document.oncontextmenu ...

  7. vue.js 源代码学习笔记 ----- core scedule.js

    /* @flow */ import type Watcher from './watcher' import config from '../config' import { callHook } ...

  8. vue.js 源代码学习笔记 ----- core array.js

    /* * not type checking this file because flow doesn't play well with * dynamically accessing methods ...

  9. three.js 来源目光(十三)Math/Ray.js

    商域无疆 (http://blog.csdn.net/omni360/) 本文遵循"署名-非商业用途-保持一致"创作公用协议 转载请保留此句:商域无疆 -  本博客专注于 敏捷开发 ...

随机推荐

  1. iphone丢了以后发现关机了怎么办?

    有好几个办法都可以尝试一下: 1. "ICCID法",但目前这个办法只能寻找苹果iPhone手机,而对于安卓手机,则不能采取相同的方法进行寻找.之所以能采取该方法寻找苹果 iPho ...

  2. 面试准备——springboot相关

    https://www.jianshu.com/p/63ad69c480fe https://blog.csdn.net/u013605060/article/details/80255192 htt ...

  3. Absolute(绝对定位)与relative(相对定位)的图文讲解

    Position的属性值有:1.     Absolute:绝对定位,是相对于最近的且不是static定位的父元素来定位 2.     Fixed:绝对定位,是相对于浏览器窗口来定位的,是固定的,不会 ...

  4. Linux下dpkg的用法

    转自:http://blog.csdn.net/fireblue1990/article/details/52627952 dpkg是一个Debian的一个命令行工具,它可以用来安装.删除.构建和管理 ...

  5. ubuntu14.04 software-center can not open

    sudo apt-get update sudo apt-get dist-upgrade sudo apt-get install --reinstall software-center

  6. 【Luogu】P1199三国游戏(博弈论)

    题目链接 来看一波有理有据的分析 三牧小明的那篇 代码 #include<cstdio> #include<cctype> #include<algorithm> ...

  7. bzoj3874&2832 [Ahoi2014]宅男计划 模拟退火,三分

    [Ahoi2014&Jsoi2014]宅男计划 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 962  Solved: 371[Submit][ ...

  8. bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望

    [bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之 ...

  9. cf493E Vasya and Polynomial

    Vasya is studying in the last class of school and soon he will take exams. He decided to study polyn ...

  10. LA 3644 简单并查集

    题目大意:有一些简单的化合物,每个化合物由两种元素组成,把这些化合物按顺序装车,若k个化合物正好包含k种元素,那么就会爆炸.避免爆炸,有些化合物就不能装车.求有多少个不能装车. 题目分析:若k个化合物 ...