FJNUOJ1158(莫比乌斯反演)
题目:给定n个数字a1...an。有m个询问,格式为L R X Y,意为求aL到aR之间与x的最大公因数为y的个数。
数据组数T<=20
1<=n,m<=1e5
1<=ai<=1e5
1<=L,R<=n;1<=X,Y<=1e5
分析:
考虑预处理出1~1e5所有数字的因子
然后就可以知道每个因子在1~n这n个位置的分布情况
对于一个询问(l,r,x,y)
就相当于求[l,r]之间公因数为y,[l,r]之间公因数为2y,[l,r]之间公因数为3y……等等这些做容斥,很容易就看出这满足经典的莫比乌斯反演
具体的F(n)表示[l,r]之间和x共有因数y的数字的个数,f(n)表示[l,r]之间和x的最大公约数位y的数字的个数
那么f(n)=Σμ(d/n)F(d)
那么F(d)怎么求呢,F(d)其实就是因数d在[l,r]中出现了几个,直接二分就行了
复杂度不好估计,但不会超过O(n根号n)
FJNUOJ1158(莫比乌斯反演)的更多相关文章
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 莫比乌斯函数筛法 & 莫比乌斯反演
模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- POI2007_zap 莫比乌斯反演
题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- CSU 1325 莫比乌斯反演
题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...
随机推荐
- SpringBoot_整合视图层技术
SpringBoot整合视图层技术 在目前的企业级应用开发中,前后端分离是趋势,但是视图层技术还占有一席之地.Spring Boot对视图层技术提供了很好的支持,官方推荐使用的模板引擎是Thymele ...
- react学习文档
转自http://www.ruanyifeng.com/blog/2015/03/react.html,阮一峰老师的博客. 最近想学习react,官方文档的例子不是那么浅显易懂,看了相关博客,觉得阮一 ...
- Spark学习之Spark调优与调试(7)
Spark学习之Spark调优与调试(7) 1. 对Spark进行调优与调试通常需要修改Spark应用运行时配置的选项. 当创建一个SparkContext时就会创建一个SparkConf实例. 2. ...
- SugarCRM安装踩雷(一)
安装SugarCRM前置条件: 1.找对平台.正确版本的安装包 2.APACHE + MYSQL + TOMCAT环境先确保OK 坑1: 进入安装参数设置步骤的MYSQL用户密码——这里根据Mysql ...
- iOS/Android 视频编辑SDK
锐动天地为开发者提供短视频编辑.特效.直播.录屏.编解码.视频转换,等多种解决方案,涵盖PC.iOS.Android多平台.以市场为导向,不断打磨并创新技术,在稳定性,兼容性,硬件设备效率优化上千捶百 ...
- provider模式
最近看代码有所感想吧.当底层API,发生变化时,可以使用Provider模式.既然是模式就一定的股则. 1.该模式对原有接口的封装. 2.该模式实现对API的封装,不显示细节,从而取消依赖关系. 3. ...
- H.264学习笔记1——相关概念
此处记录学习AVC过程中的一些基本概念,不定时更新. frame:帧,相当于一幅图像,包含一个亮度矩阵和两个色度矩阵. field:场,一帧图像,通过隔行扫描得到奇偶两场,分别称为顶场和底场或奇场和偶 ...
- CentOS 7 配置本地yum 源
1. 加载 CentOS的ISO镜像并挂载: [root@localhost files]# mount /media/files/CentOS-7-x86_64-DVD-1611.iso /mnt/ ...
- iview构建 初始化的时候不要装ESlint 太烦人了
iview构建 Node.js Vue(全局安装) npm install -g vue-cli npm install vue-cli 问题:发现如果不全局安装VUE-cli,\n在它初始化的时候, ...
- 小b和灯泡
2489 小b和灯泡 2 秒 262,144 KB 10 分 2 级题 小b有n个关闭的灯泡,编号为1...n. 小b会进行n轮操作,第i轮她会将编号为i的倍数的灯泡的开关状态取反,即开变成关,关 ...