Exca王者之剑 bzoj-1324

题目大意题目链接

注释:略。


想法

最小割经典模型。

所有格子向源点连权值为格子权值的边。

将棋盘黑白染色后白点反转源汇。

如果两个格子相邻那么黑点向白点连$inf$的有向边。

求最小割即可。

开始把所有点的权值都加上,如果被割掉那么就表示这个格子不选。

Code

#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define N 100010
using namespace std;
queue<int>q;
int to[N<<1],nxt[N<<1],tot=1,val[N<<1],head[N],dis[N],S,T;
int d1[]={-1,1,0,0};
int d2[]={0,0,1,-1};
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int rd() {int x=0,f=1; char c=nc(); while(c<48) {if(c=='-') f=-1; c=nc();} while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return x*f;}
inline void add(int x,int y,int z)
{
to[++tot]=y; val[tot]=z; nxt[tot]=head[x]; head[x]=tot;
to[++tot]=x; val[tot]=0; nxt[tot]=head[y]; head[y]=tot;
}
bool bfs()
{
memset(dis,-1,sizeof dis); while(!q.empty()) q.pop();
dis[S]=0; q.push(S); while(!q.empty())
{
int x=q.front(); q.pop(); for(int i=head[x];i;i=nxt[i]) if(dis[to[i]]==-1&&val[i]>0)
{
dis[to[i]]=dis[x]+1; q.push(to[i]);
if(to[i]==T) return true;
}
}
return false;
}
int dinic(int x,int fl)
{
int tmp=fl; if(x==T) return fl; for(int i=head[x];i;i=nxt[i]) if(dis[to[i]]==dis[x]+1&&val[i]>0)
{
int mdl=dinic(to[i],min(val[i],tmp));
if(!mdl) dis[to[i]]=-1;
tmp-=mdl; val[i]-=mdl; val[i^1]+=mdl;
if(!tmp) break;
}
return fl-tmp;
}
int main()
{
int ans=0;
int n=rd(),m=rd(); T=n*m+1; for(int i=1;i<=n;i++) for(int j=1;j<=m;j++)
{
int v=rd(); ans+=v;
if((i+j)&1) add(S,(i-1)*m+j,v),add((i-1)*m+j,T,0);
else add((i-1)*m+j,T,v),add(S,(i-1)*m+j,0);
for(int k=0;k<4;k++)
{
int x=i+d1[k],y=j+d2[k];
if(x>=1&&x<=n&&y>=1&&y<=m) ((i+j)&1)?
(add((i-1)*m+j,(x-1)*m+y,inf)):
(add((x-1)*m+y,(i-1)*m+j,inf));
}
}
while(bfs()) ans-=dinic(S,1<<30);
cout << ans << endl ;
return 0;
}

小结:最小割的建模还是比较具有规律性的。

[bzoj1324]Exca王者之剑_最小割的更多相关文章

  1. BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan

    BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤ ...

  2. BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割

    BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作 ...

  3. LOJ_6045_「雅礼集训 2017 Day8」价 _最小割

    LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含 ...

  4. BZOJ_3144_[Hnoi2013]切糕_最小割

    BZOJ_3144_[Hnoi2013]切糕_最小割 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R ...

  5. BZOJ_2561_最小生成树_最小割

    BZOJ_2561_最小生成树_最小割 题意: 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条 ...

  6. BZOJ_3438_小M的作物_最小割

    BZOJ_3438_小M的作物_最小割 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子 有1个(就是可以种一棵作物) ...

  7. BZOJ_4177_Mike的农场_最小割

    BZOJ_4177_Mike的农场_最小割 Description Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不 ...

  8. BZOJ1324: Exca王者之剑

    1324: Exca王者之剑 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 256  Solved: 131[Submit][Status] Desc ...

  9. [bzoj1497][NOI2006]最大获利_网络流_最小割

    最大获利 bzoj-1497 题目大意:可以建立一个点,花费一定的代价:将已经建立的两个点之间连边,得到一定收益.有些节点之间是不允许连边的. 注释:1<=点数<=5,000,1<= ...

随机推荐

  1. 关于线程间操作无效: 从不是创建控件“xx”的线程访问它,错误解决方法(自定义委托和系统委托Action或Func解决)

    这是一个线程不安全的问题.跨线程操作问题. 比如我们需要在线程中改变textbox的文本,textbox的name是txtShowMsg 第一种方法(不推荐使用) 在窗体构造函数中写Control.C ...

  2. AndroidStudio启动App时,数据取不到。

    最近在用AndroidStudio开发App的时候,所连的服务器如果是换成本机上的,那么启动App的时候数据就读取不出来,连其它电脑上的服务器就是正常的,如下: 05-11 09:36:57.178 ...

  3. vultr系统重建

    vultr服务器重启后ssh连接不上,view console只能guest登录,遍寻方法,无解,无奈重装系统. 服务器地址:Los Angeles 系统: Ubuntu 14.04 x64 用户:r ...

  4. numpy基本用法

    numpy 简介 numpy的存在使得python拥有强大的矩阵计算能力,不亚于matlab. 官方文档(https://docs.scipy.org/doc/numpy-dev/user/quick ...

  5. java 文件另存为

    FileUtils.copyFile(new File(), new File());

  6. swift派发机制的核心是确定一个函数能否进入动态派发列表

    swift派发机制的核心是确定一个函数能否进入动态派发列表

  7. 深入理解python对象及属性

    类属性和实例属性首先来看看类属性和类实例的属性在python中如何存储,通过__dir__方法来查看对象的属性 >>> class Test(object): pass>> ...

  8. Spring Boot(15)——自动配置Validation

    自动配置Validation当应用中的Classpath下存在javax.validation的实现时,Spring Boot的org.springframework.boot.autoconfigu ...

  9. js 动态添加表单 table tr

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. WPF学习- AllowDrop 用户控件启用拖放功能

    知识点: 创建自定义用户控件(UserControl) 使用户控件成为拖动源 使用户控件成为放置目标 使面板能够接收从用户控件放置的数据 创建项目: 1.新建WPF项目(Wpf-AllowDrop) ...