算法学自 BYVoid

https://www.byvoid.com/zhs/blog/scc-tarjan/

这个写得很清楚了

当然 你可能不这么认为

而且 如果是让我 一开始就从这个博客 学 tarjan 缩点

估计我也会觉得 很难懂

我猜是 博客看多了 有了些基础

在看这一篇的时候懂了

就觉得 是这篇比较好懂

(事实上人家本来写得就可以嘛)

我想到了 班主任的一句话

量的积累 才有质的变化

GeneralLiu

tarjan 缩点 求 scc(strongly connected components)

有向图 强连通分量

首先 给自己 刷个广告

tarjan 是基于 dfs树 的算法

我觉得 dfs树 上的一些 术语有必要知道 一下

所以, 看我 博客

还有, 就是 ,两个数组  dfn[] , low[]

分别为     i的时间戳 ,   i能最早追溯到的时间戳

这个比较难理解

非常重要

因为 tarjan 发明的 求 割点、割边 的算法

也要活用到 这两个数组

(其实不用怕 tarjan ,这不过是个帅哥 的名字 罢了)

说说我的个人理解

dfn [ i ] 是程序第几次 dfs 到 节点 i

所以起名叫 dfn ( dfs 的 第 n 次执行 ,n ∈ [ 1 , MAXN ] );

low [ i ] 是 dfs 过程中 有时会

遇到回到 之前 节点的 路径 ( 之前 是指先前 dfs 到 的 点 )

那么 节点 i 就能 沿着 这条路 返回 之前的点

low [ i ] 就是 i  {  [  能返回的  (  dfn值最小的  )   点  ]  的dfn值  }

额 。理不理解都往下看吧  毕竟 量的积累 还是很有必要的

每次dfs(点u){

  dfn[u] = 进入 dfs() 函数的次数  (自己定义一个时间戳记录 如 timee)

枚举与其相邻的点v{

       如果 没有 访问过点v {   ( 就是dfs树上的树边 )

        dfs(v);

        如果 v 能追溯 到 比“u 追溯到的最早的点” 更早的点;

        那么 u 就能 通过 v 来追溯到 那个点;

        low[u]=min(low[u],low[v]);

      }

      如果 访问过点v && v在栈中

       low[u]=min(low[u],dfn[v]);

}

  缩点

}

两个例题

luogu1

luogu2

输出要求不同,

笔者建议 独立体会

下面的 代码 大同小异

1

#include<iostream>
#include<stack>
#include <cstring>
using namespace std;
int m,ans,bbk[],bk,b[],head[],cnt,dfn[],low[],n;
stack<int>zz;
bool ru[];
struct aa{
int to,next;
}e[];
void add(int x, int y)
{
e[cnt].to = y;
e[cnt].next = head[x];
head[x] = cnt++;
} /*void add(int from,int to){
e[++cnt]=(aa){to,head[from]};
head[from]=cnt;
}*/
void dfs(int k){
dfn[k]=low[k]= ++cnt;
b[k]=;
zz.push(k);
int j;
for(int i=head[k];i!=-;i=e[i].next){
j=e[i].to;
if(!dfn[j]){
dfs(j);
low[k]=min(low[k],low[j]);
}
else if(b[j]&&dfn[j]<low[k])low[k]=dfn[j];
}
if(dfn[k]==low[k]){
bk++;
do{
j=zz.top();
zz.pop();
b[j]=;
bbk[j]=bk;
}while(j!=k);
}
}
int main(){
cin>>n;
memset(head, -, sizeof(head));
for(int x,i=;i<=n;i++){
cin>>x;
while(x){
add(i,x);
cin>>x;
}
}
cnt=;
for(int i=;i<=n;i++)
if(!dfn[i])
dfs(i);
for(int i=;i<=n;i++)
for(int y,j=head[i];j!=-;j=e[j].next){
y=e[j].to;
if(bbk[y]!=bbk[i])ru[bbk[y]]=;
}
for(int i=;i<=bk;i++)
if(!ru[i])
ans++;
cout<<ans;
return ;
}

2

#include<iostream>
#include<stack>
using namespace std;
int m,ans,bbk[],bk,b[],head[],cnt,dfn[],low[],n;
stack<int>zz;
struct aa{
int to,next;
}e[];
void add(int from,int to){
e[++cnt]=(aa){to,head[from]};
head[from]=cnt;
}
void dfs(int k){
dfn[k]=low[k]= ++cnt;
b[k]=;
zz.push(k);
int j;
for(int i=head[k];i;i=e[i].next){
j=e[i].to;
if(!dfn[j]){
dfs(j);
low[k]=min(low[k],low[j]);
}
else if(b[j]&&dfn[j]<low[k])low[k]=dfn[j];
}
if(dfn[k]==low[k]){
bk++;
do{
j=zz.top();
zz.pop();
b[j]=;
bbk[bk]++;
}while(j!=k);
}
}
int main(){
cin>>n>>m;
for(int x,y,i=;i<=m;i++){
cin>>x>>y;
add(x,y);
}
cnt=;
for(int i=;i<=n;i++)
if(!dfn[i])
dfs(i);
for(int i=;i<=bk;i++)
if(bbk[i]>)
ans++;
cout<<ans;
return ;
}

tarjan 缩点 求 scc的更多相关文章

  1. POJ-3352 Road Construction,tarjan缩点求边双连通!

    Road Construction 本来不想做这个题,下午总结的时候发现自己花了一周的时间学连通图却连什么是边双连通不清楚,于是百度了一下相关内容,原来就是一个点到另一个至少有两条不同的路. 题意:给 ...

  2. Tarjan缩点求入度为零的点的个数问题

    Description: 一堆人需要联系,但如果x 可以联系 y,你联系了x就不用联系y了,你联系一个人都会有固定的花费,问你最小联系多少人,和最小花费 Solution: Tarjan缩点,求出缩点 ...

  3. HDU 4612 Warm up tarjan缩环+求最长链

    Warm up Problem Description   N planets are connected by M bidirectional channels that allow instant ...

  4. BZOJ5450: 轰炸(水题,Tarjan缩点求最长路)

    5450: 轰炸 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 43  Solved:18[Submit][Status][Discuss] Desc ...

  5. Grouping ZOJ - 3795 (tarjan缩点求最长路)

    题目链接:https://cn.vjudge.net/problem/ZOJ-3795 题目大意:给你n个人,m个关系, 让你对这个n个人进行分组,要求:尽可能的分组最少,然后每个组里面的人都没有关系 ...

  6. 【Tarjan缩点】PO3352 Road Construction

    Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 12532   Accepted: 630 ...

  7. POJ2533&&SP1799 The Bottom of a Graph(tarjan+缩点)

    POJ2553 SP1799 我们知道单独一个强连通分量中的所有点是满足题目要求的 但如果它连出去到了其他点那里,要么成为新的强连通分量,要么失去原有的符合题目要求的性质 所以只需tarjan缩点求出 ...

  8. tarjan算法求scc & 缩点

    前置知识 图的遍历(dfs) 强连通&强连通分量 对于有向图G中的任意两个顶点u和v存在u->v的一条路径,同时也存在v->u的路径,我们则称这两个顶点强连通.以此类推,强连通分量 ...

  9. 间谍网络——tarjan求SCC

    洛谷传送门 看着这道题给人感觉就是tarjan求SCC,然而还得判断是否能控制全部间谍,这就得先从可以贿赂的点dfs一遍. 如果没有全部被标记了,就输出NO,再从没被标记的点里找最小的标号. 如果全被 ...

随机推荐

  1. liunx下忘记root密码的解决方法

    1.在Liunx 刚开始重启时.我们这里按“e”键进入系统启动前的Grub配置.(注:一般要安两次e键)(如果你的系统引导程序是LILO,和Grub大体类似,请自行参照LILO给出的提示操作) 如图: ...

  2. 提高VS2010运行速度的技巧+关闭拼写检查

    任务管理器,CPU和内存都不高,为何?原因就是VS2010不停地读硬盘导致的; 写代码2/3的时间都耗在卡上了,太难受了; 研究发现,VS2010如果你装了VC等语言,那么它就会自动装SQL Serv ...

  3. NumPy库的基本使用

    一.介绍 ——NumPy库是高性能科学计算和数据分析的基础包,它是Pandas及其它各种工具的基础 ——NumPy里的ndarry多维数组对象,与列表的区别是: - 数组对象内的元素类型必须一样 - ...

  4. ajax传给springMVC数据编码集问题

    前台 ajax: $.ajax("${pageContext.request.contextPath}/hello",// 发送请求的URL字符串. { dataType : &q ...

  5. POJ 2378 Tree Cutting (树的重心,微变形)

    题意: 给定一棵树,n个节点,若删除点v使得剩下的连通快最大都不超过n/2,则称这样的点满足要求.求所有这样的点,若没有这样的点,输出NONE. 思路: 只需要拿“求树的重心”的代码改一行就OK了.因 ...

  6. leecode 旋转数组

    描述 给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数. 示例 1: 输入: [1,2,3,4,5,6,7] 和 k = 3 输出: [5,6,7,1,2,3,4] 解释: 向右旋 ...

  7. python mysql备份脚本

    #!/usr/bin/env python # encoding: utf-8 #@author: 东哥加油! #@file: pyinnobackup.py #@time: 2018/12/11 1 ...

  8. 【Git版本控制】Git使用教程

    1.Git的综述 SVN是集中式版本控制系统,版本库集中放在中央服务器上,而干活时用的都是自己的电脑,所以首先要从中央服务器哪里得到最新的版本,然后干活,干完后,需要把自己做完的活推送到中央服务器.集 ...

  9. 永久激活IDEA的方法

    第一步,下载破解补丁jetbrains-agent.jar 链接:https://pan.baidu.com/s/15x6dzOjveMkHlgHJT0PBWg提取码:2ykx 第二步,将下载的破解补 ...

  10. Linux下的Memcache安装及安装Memcache的PHP扩展安装

    Linux下Memcache服务器端的安装服务器端主要是安装memcache服务器端,目前的最新版本是 memcached-1.3.0 .下载:http://www.danga.com/memcach ...