题目

给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。

输入格式

输入文件中仅包含一行两个整数a、b,含义如上所述。

输出格式

输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。

输入样例

1 99

输出样例

9 20 20 20 20 20 20 20 20 20

提示

30%的数据中,a<=b<=10^6;

100%的数据中,a<=b<=10^12。

题解

你以为我真的会写数位dp?

首先容斥一下,转化为求小于等于n的方案数

如果不考虑前缀0,那么就只需要递归处理不大于n所有数字出现的次数

考虑前缀0,我们再减去开头有若干个0的方案数

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 15,maxm = 100005,INF = 1000000000;
LL g[maxn],Pow[maxn];
void init(){
Pow[0] = 1;
for (int i = 1; i < maxn; i++) Pow[i] = Pow[i - 1] * 10;
g[1] = 1;
for (int i = 2; i < maxn; i++){
g[i] = 10 * g[i - 1] + Pow[i - 1];
}
}
struct node{
LL t[10];
node(){memset(t,0,sizeof(t));}
};
node cal(LL n,LL h,LL tmp){
//cout << n << endl;
node re,t;
if (h == 1){
for (int i = 0; i <= n; i++) re.t[i] = 1;
return re;
}
for (int i = 0; i <= 9; i++){
re.t[i] += (n / tmp) * g[h - 1];
if (i < n / tmp) re.t[i] += Pow[h - 1];
}
re.t[n / tmp] += n - (n / tmp) * tmp + 1;
t = cal(n % tmp,h - 1,tmp / 10);
for (int i = 0; i <= 9; i++) re.t[i] += t.t[i];
return re;
}
node solve(LL n){
LL h = 1,tmp = 1;
for (LL i = n; i / 10; i /= 10) h++,tmp *= 10;
node re = cal(n,h,tmp);
for (int i = 1; i < h; i++){
re.t[0] -= Pow[h - i];
}
return re;
}
int main(){
init();
LL a,b;
cin >> a >> b;
node ansr = solve(b),ansl = solve(a - 1);
for (int i = 0; i < 9; i++) printf("%lld ",ansr.t[i] - ansl.t[i]);
printf("%lld",ansr.t[9] - ansl.t[9]);
return 0;
}

BZOJ1833 [ZJOI2010]count 数字计数 【数学 Or 数位dp】的更多相关文章

  1. BZOJ1833 ZJOI2010 count 数字计数 【数位DP】

    BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...

  2. [BZOJ1833][ZJOI2010]count 数字计数

    [BZOJ1833][ZJOI2010]count 数字计数 试题描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入 输入文件中仅包含一行两个整数a ...

  3. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  4. bzoj1833: [ZJOI2010]count 数字计数 && codevs1359 数字计数

    bzoj1833 codevs1359 这道题也是道数位dp 因为0有前导0这一说卡了很久 最后发现用所有位数减1~9的位数就okay.....orzczl大爷 其他就跟51nod那道统计1出现次数一 ...

  5. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  6. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

  7. bzoj1833: [ZJOI2010]count 数字计数&&USACO37 Cow Queueing 数数的梦(数位DP)

    难受啊,怎么又遇到我不会的题了(捂脸) 如题,这是一道数位DP,随便找了个博客居然就是我们大YZ的……果然nb,然后就是改改模版++注释就好的了,直接看注释吧,就是用1~B - 1~A-1而已,枚举全 ...

  8. 【数位dp】bzoj1833: [ZJOI2010]count 数字计数

    数位dp姿势一直很差啊:顺便庆祝一下1A Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a ...

  9. [BZOJ1833][ZJOI2010]Count数字计数(DP)

    数位DP学傻了,怎么写最后都写不下去了. 这题严格上来说应该不属于数位DP?只是普通DP加上一些统计上的判断吧. 首先复杂度只与数的位数$\omega$有关,所以怎么挥霍都不会超. f[i][j][k ...

随机推荐

  1. 成魔笔记1——先入IT,再成魔

    关于我为什么要写这个博客的原因,做一个简单的解释.因为报考的一时兴起,我选择了软件专业.可是三年下来,感觉自己没做多少事,也没收获到多少东西.很多时候都是老师讲什么,都是完全陌生的东西,跟不上教学的思 ...

  2. Python协程函数

    1 协程函数 1.1 协程函数理解 协程函数就是使用了yield表达式形式的生成器 def eater(name): print("%s eat food" %name) whil ...

  3. Sql Server 自动备份

    1)启动代理服务 服务->Sql server 代理启动 2)设置维护计划 维护计划->设置维护计划向导->修改名称及说明 3)更改计划 4)选择维护任务 5)顺序调整不做解释 6) ...

  4. PHP 腾讯云cos使用之我见

    因为某些人的原因,本文从新改名发布一遍. 原名称:tp5 -- 腾讯云cos简单使用 原文链接:https://www.cnblogs.com/YFYQ/p/10840050.html 因项目需要,本 ...

  5. 阿里短信接口使用(JAVA版)

    近期项目需要使用短信接口,对比下选择了阿里的短信接口 以下为开发笔记: maven pom.xml中引入: <dependency> <groupId>com.aliyun&l ...

  6. Clover KextsToPatch 使用方法 2015.10.21

    Clover KextsToPatch 使用方法 2015.10.21   前些天,因为 Thinkpad X230 BIOS 白名单限制,给她换了一块 ar9285 无线网卡,只是因为这块网卡正好可 ...

  7. 【二分 贪心】bzoj3477: [Usaco2014 Mar]Sabotage

    科学二分姿势 Description Farmer John's arch-nemesis, Farmer Paul, has decided to sabotage Farmer John's mi ...

  8. centos7内核优化

    #sysctl -p 参数: net.ipv6.conf.all.disable_ipv6 = 1net.ipv6.conf.default.disable_ipv6 = 1net.ipv4.icmp ...

  9. Python操作12306抢票脚本

    有一段时间没有使用Python了,前几天经朋友提起一篇关于用Python实现抢火车票的文章,百度了实现抢火车票的技术细节,网上却有不少资料,也不是新鲜的东西.在了解了一些技术手段,阅读了一些大神的博文 ...

  10. python index 自己实现

    l = [2,3,4,223,42,56,7,389,586,845,8,894,343,46,345,3556,23,233,45,25,78,456,785,576,344,6,34,563,] ...