洛谷P3097 - [USACO13DEC]最优挤奶Optimal Milking
Description
给出一个\(n(n\leq4\times10^4)\)个数的数列\(\{a_n\}(a_i\geq1)\)。一个数列的最大贡献定义为其中若干个不相邻的数的和的最大值。进行\(m(m\leq5\times10^4)\)次操作,每次修改数列中的一个数并询问此时的最大贡献。
Solution
线段树。
对于线段树上每个节点\([L,R]\),维护四个值\(f_{00},f_{01},f_{10},f_{11}\),分别表示\(a_L,a_R\)都不选,不选\(a_L\)选\(a_R\),选\(a_L\)不选\(a_R\),\(a_L,a_R\)都选的最大贡献。那么\(ans=max\{f[rt]\}\)。
接下来只需要考虑如何合并。其实很简单,只要保证中间的两个不全是\(1\)就好:
f_{01}=max\{f_{00}[Ls]+f_{01}[Rs],f_{01}[Ls]+f_{01}[Rs],f_{00}[Ls]+f_{11}[Rs]\} \\
f_{10}=max\{f_{10}[Ls]+f_{00}[Rs],f_{11}[Ls]+f_{00}[Rs],f_{10}[Ls]+f_{10}[Rs]\} \\
f_{11}=max\{f_{10}[Ls]+f_{01}[Rs],f_{11}[Ls]+f_{01}[Rs],f_{10}[Ls]+f_{11}[Rs]\}\]
时间复杂度\(O(mlogn)\)。
Code
//[USACO13DEC]最优挤奶Optimal Milking
#include <cstdio>
typedef long long lint;
inline char gc()
{
static char now[1<<16],*s,*t;
if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
return *s++;
}
inline int read()
{
int x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
inline int max(int x,int y) {return x>y?x:y;}
const int N=16e4+10;
int n,m;
#define Ls (p<<1)
#define Rs (p<<1|1)
int rt; lint f00[N],f01[N],f10[N],f11[N];
inline void update(int p)
{
f00[p]=max(f00[Ls]+f00[Rs],max(f01[Ls]+f00[Rs],f00[Ls]+f10[Rs]));
f01[p]=max(f00[Ls]+f01[Rs],max(f01[Ls]+f01[Rs],f00[Ls]+f11[Rs]));
f10[p]=max(f10[Ls]+f00[Rs],max(f11[Ls]+f00[Rs],f10[Ls]+f10[Rs]));
f11[p]=max(f10[Ls]+f01[Rs],max(f11[Ls]+f01[Rs],f10[Ls]+f11[Rs]));
}
void ins(int p,int L0,int R0,int x,int v)
{
if(L0==x&&x==R0) {f00[p]=f01[p]=f10[p]=0,f11[p]=v; return;}
int mid=L0+R0>>1;
if(x<=mid) ins(Ls,L0,mid,x,v);
else ins(Rs,mid+1,R0,x,v);
update(p);
}
int main()
{
n=read(),m=read();
rt=1;
for(int i=1;i<=n;i++) ins(rt,1,n,i,read());
lint ans=0;
for(int i=1;i<=m;i++)
{
int x=read(),v=read();
ins(rt,1,n,x,v);
ans+=max(max(f00[rt],f01[rt]),max(f10[rt],f11[rt]));
}
printf("%lld\n",ans);
return 0;
}
P.S.
标题好长呀...
洛谷P3097 - [USACO13DEC]最优挤奶Optimal Milking的更多相关文章
- P3097 [USACO13DEC]最优挤奶Optimal Milking
P3097 [USACO13DEC]最优挤奶Optimal Milking 题意简述:给定n个点排成一排,每个点有一个点权,多次改变某个点的点权并将最大点独立集计入答案,输出最终的答案 感谢@zht4 ...
- [P3097] [USACO13DEC] [BZOJ4094] 最优挤奶Optimal Milking 解题报告(线段树+DP)
题目链接:https://www.luogu.org/problemnew/show/P3097#sub 题目描述 Farmer John has recently purchased a new b ...
- P3097 [USACO13DEC]最优挤奶(线段树优化dp)
盲猜dp系列... 题意:给定序列,选了i就不能选与i相邻的两个,求最大值,带修改 蒟蒻在考场上10min打完以为只有两种情况的错解...居然能骗一点分... 先讲下当时的思路吧. f[i][0/1] ...
- 【题解】洛谷P1073 [NOIP2009TG] 最优贸易(SPFA+分层图)
次元传送门:洛谷P1073 思路 一开始看题目嗅出了强连通分量的气息 但是嫌长没打 听机房做过的dalao说可以用分层图 从来没用过 就参考题解了解一下 因为每个城市可以走好几次 所以说我们可以在图上 ...
- 洛谷P3093 [USACO13DEC]牛奶调度Milk Scheduling
题目描述 Farmer John has N cows that need to be milked (1 <= N <= 10,000), each of which takes onl ...
- 【洛谷P1073】最优贸易
题目大意:给定一个 N 个点,M 条边(存在反向边)的有向图,点有点权,求一条从 1 到 N 的路径上,任意选出两个点 p,q (p 在前,q在后),两点点权的差值最大. 根据最短路的 dp 思想,可 ...
- 【洛谷 P1073】 最优贸易 (Tarjan缩点+拓扑排序)
题目链接 先\(Tarjan\)缩点,记录每个环内的最大值和最小值. 然后跑拓扑排序,\(Min[u]\)表示到\(u\)的最小值,\(ans[u]\)表示到\(u\)的答案,\(Min\)和\(an ...
- 洛谷P3094 [USACO13DEC]假期计划Vacation Planning
题目描述 有N(1 <= N <= 200)个农场,用1..N编号.航空公司计划在农场间建立航线.对于任意一条航线,选择农场1..K中的农场作为枢纽(1 <= K <= 100 ...
- 洛谷1073 NOIP2009 最优贸易
题目大意 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双 ...
随机推荐
- Azure 项目构建 – 构建和部署 .NET 应用程序
本课程主要介绍了如何在 Azure 平台上快速构建和部署基于 .NET 语言的 Web 应用, 实践讲解如何使用 Azure 门户创建 Web 应用, 部署 ASP.NET 代码, 连接 Azure ...
- Unity3d中MonoBehavior默认函数的执行顺序和生命周期
Awake()在MonoBehavior创建后就立刻调用,在脚本实例的整个生命周期中,Awake函数仅执行一次:如果游戏对象(即gameObject)的初始状态为关闭状态,那么运行程序,Awake函数 ...
- spark 的RDD各种转换和动作
今天先把spark的各种基本转换和动作总结下,以后有时间把各种用法放上去. 1 RDD基本转换操作 map.flagMap.distinct coalesce.repartition coale ...
- 数据库-SQL语法:GROUP BY与HAVING
注意:select 后的字段,必须要么包含在group by中,要么包含在having 后的聚合函数里. 1. GROUP BY 是分组查询, 一般 GROUP BY 是和聚合函数配合使用. grou ...
- Hibernate的二级缓存使用(spring使用)
(一)Hibernate的二级缓存策略的一般过程如下: 1) 条件查询的时候,总是发出一条select * from table_name where …. (选择所有字段)这样的SQL语句查询数据库 ...
- Java中的线程--线程范围内共享数据
接着学习Java中的线程,线程范围内的共享数据! 一.线程范围内的数据共享定义 对于相同的程序代码,多个模块在同一个线程中共享一份数据,而在另外线程中运行时又共享另外一份数据. 共享数据中存在的问题, ...
- 身份证号正则校验(js校验+JAVA校验)
js校验身份证号[15位和18位] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 ...
- 【动态规划】loj#2485. 「CEOI2017」Chase
有意思的可做dp题:细节有点多,值得多想想 题目描述 在逃亡者的面前有一个迷宫,这个迷宫由 nnn 个房间和 n−1n-1n−1 条双向走廊构成,每条走廊会链接不同的两个房间,所有的房间都可以通过走廊 ...
- C语言:哲学家吃饭问题
//五个哲学家围坐在一起,两人之间都放有一个叉子,意大利面需要2个叉子吃,哲学家吃饭时候叉子只能拿左右手,哲学家除了吃饭时间其他时间都在思考 #include <stdio.h> #inc ...
- SQL server的GO用法--巨坑
SQL脚本是一种用SQL语言写的批处理文件(.sql),SQL脚本通常可以由SQL查询分析器来执行. ================================================= ...