3675: [Apio2014]序列分割


Time Limit: 40 Sec  Memory Limit: 128 MB
Submit: 4021  Solved: 1569
[Submit][Status][Discuss]

Description


小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
 
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。
 

Input


输入第一行包含两个整数n,k(k+1≤n)。

第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。

Output


输出第一行包含一个整数,为小H可以得到的最大分数。

Sample Input


       

Sample Output


 

HINT


【样例说明】

在样例中,小H可以通过如下3轮操作得到108分:

1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置

将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。

2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数

字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+

3)=36分。

3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个

数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)=

20分。

经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。

【数据规模与评分】

:数据满足2≤n≤100000,1≤k≤min(n -1,200)。

分析:


斜率优化眼题,不想说啥,考试时10分钟切掉。

写的是apio原题,bzoj不需要输出方案,结果wa了一发

AC代码:


# include <iostream>
# include <cstdio>
using namespace std;
typedef long long LL;
const int N = 1e5 + ;
LL f[][N],s[N],ret;int n,k,cur,que[N],ans[N],pre[][N];
LL y(int i){return f[cur ^ ][i] - s[i] * s[i];}
LL x(int i){return s[i];}
LL Get(int A,int B){return f[cur ^ ][A] + s[A] * (s[B] - s[A]);}
LL Cross(int A,int B,int C){return (y(C) - y(B)) * (x(B) - x(A)) - (y(B) - y(A)) * (x(C) - x(B));}
int main()
{
scanf("%d %d",&n,&k);
for(int i = ;i <= n;i++)scanf("%lld",&s[i]);
for(int i = ;i <= n;i++)s[i] += s[i - ];
for(int j = ;j <= k;j++)
{
cur ^= ;int h = ,t = ;que[++t] = ;
for(int i = ;i <= n;i++)
{
while(h < t && Get(que[h],i) <= Get(que[h + ],i))h++;
f[cur][i] = Get(que[h],i);pre[j][i] = que[h];
while(h < t && Cross(que[t - ],que[t],i) >= )t--;
que[++t] = i;
}
}
printf("%lld\n",f[cur][n]);
int c = k,r = pre[c][n];
printf("%d",r);
while(pre[c - ][r])r = pre[--c][r],printf(" %d",r);
return ;
}

[Bzoj3675][Apio2014]序列分割(斜率优化)的更多相关文章

  1. bzoj3675[Apio2014]序列分割 斜率优化dp

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3508  Solved: 1402[Submit][Stat ...

  2. BZOJ3675: [Apio2014]序列分割(斜率优化)

    Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4186  Solved: 1629[Submit][Status][Discuss] Descript ...

  3. [APIO2014]序列分割 --- 斜率优化DP

    [APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...

  4. 【bzoj3675】[Apio2014]序列分割 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...

  5. P3648 [APIO2014]序列分割 斜率优化

    题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...

  6. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...

  7. BZOJ3675 [Apio2014]序列分割 【斜率优化dp】

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MB Submit: 3366  Solved: 1355 [Submit][St ...

  8. BZOJ3675 [Apio2014]序列分割 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8697258.html 题目传送门 - BZOJ3675 题意 对于一个非负整数序列,小H需要重复k次以下的步骤: ...

  9. 【BZOJ3675】【APIO2014】序列分割 [斜率优化DP]

    序列分割 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 小H最近迷上了一个分隔序列的游戏. ...

随机推荐

  1. js获得本季度的开始日期 结束日期

    var now = new Date(); //当前日期var nowMonth = now.getMonth()+1; //当前月var nowYear = now.getFullYear(); / ...

  2. PHP 腾讯云cos使用之我见

    因为某些人的原因,本文从新改名发布一遍. 原名称:tp5 -- 腾讯云cos简单使用 原文链接:https://www.cnblogs.com/YFYQ/p/10840050.html 因项目需要,本 ...

  3. pre-receive hook declined

    没有master分支的代码提交权限. 分配权限或者提交分支合并申请

  4. Broadcast BCM94322 用ubuntu修改ID

    1.按这个教程的6楼做的http://bbs.pcbeta.com/viewthread-1324168-1-1.html.注意我先下载 的是ubuntu9.05版本,做U盘启动进live 模式,43 ...

  5. gpio/外设/控制器

    1.项目中所有的外设pad都是通过GPIO与控制器相连的.比如FSHC<=>gpio<=>flash 2.gpio类似多个 mux 集合. 3.对于与gpio相连的pad具体结 ...

  6. Day17re模块和hashlib模块

    re模块 正则表达式 用一些特殊符号拼凑成的规则,去字符串中匹配到符合规则的东西 为什么有正则表达式 从字符串中取出想要的数据 怎么用正则表达式 re.findall()结果存成列表 \w 匹配一个字 ...

  7. solr DIH 设置定时索引

    1 web.xml中加入 web.xml所在目录 /opt/solr-7.7.1/server/solr-webapp/webapp/WEB-INF <listener> <list ...

  8. ACM训练联盟周赛 K. Teemo's reunited

    Teemo likes to drink raspberry juice.  He even spent some of his spare time tomake the raspberry jui ...

  9. MIP经典问题:旅行商问题 (traveling salesman problem)

    *本文主要记录和分享学习到的知识,算不上原创. *参考文献见链接. 旅行商问题.背包问题都是0-1规划问题中最为经典的问题. 通常来说,当我们学习并熟悉一种求解混合整数问题的技巧时,可以用这种技巧来求 ...

  10. android-csv-variants

    android-csv-variants https://github.com/zawn/android-csv-variants/ 目的 用于在Android Gradle构建时通过CSV文件配置V ...