【转载】Hierarchal Temporal Memory (HTM)
最近在看机器学习,看能否根据已有的历史来预测Hardware的故障发生概率。下文是一篇很有意思的文章,转自 http://numenta.org/htm.html。
NuPIC是一个开源项目,用来实现HTM.
-------------------
There are many things humans find easy to do that computers are currently unable to do. Tasks such as visual pattern recognition, understanding spoken language, recognizing and manipulating objects by touch, and navigating in a complex world are easy for humans. Yet despite decades of research, we have few viable algorithms for achieving human-like performance on a computer.
In humans, these capabilities are largely performed by the neocortex. Hierarchal Temporal Memory (HTM) is a technology modeled on how the neocortex performs these functions. It offers the groundwork for building machines that approach or exceed human level performance for many cognitive tasks. HTM is implemented within the NuPIC open source project.
Online Learning
Most machine learning techniques are relatively static. A model is constructed from a training data set, verified on a testing data set, and then applied to real-world data. However the patterns and structure in the world changes over time. Therefore previously accurate models must be regularly retrained with new data, repeating the time and expense of the original process.
HTM on the other hand is an online learning system. It does not require conventional training and testing data sets. Instead, HTM learns continuously with each new data point. HTM is constantly making predictions which are continually verified as more data arrives. As the underlying patterns in the data change HTM adjusts accordingly. An online learning system such as HTM forces you to think about many things differently than you do with algorithms that rely on static training data sets.
Sparse Distributed Representations
Computers store information in “dense” representations such as a 32 bit word where all combinations of 1s and 0s are possible.
By contrast, brains use sparse distributed representations. The human neocortex has roughly 100 billion neurons, but at any given time only a small percent are active. The activity of neurons are like bits in a computer, and therefore the representation is sparse. HTM also uses SDRs. A typical implementation of HTM might have 2048 columns and 64K artificial neurons where as few as 40 might be active at once. There are many mathematical advantages of using SDRs. HTM and the brain could not work otherwise.

This diagram represents sparsity: two thousand circles with a small number of red circles active.
This diagram represents a sparse distributed representation: two thousand circles with a small number of red circles active.
In SDRs, unlike in a dense representations, each bit has meaning. This means that if two vectors have 1s in the same position they are semantically similar in that attribute. SDRs are how brains solve the problem of knowledge representation that has plagued AI for decades.
For more details about SDRs, watch this excerpt from a talk given by Jeff Hawkins.
【转载】Hierarchal Temporal Memory (HTM)的更多相关文章
- 转载:MAT Memory Analyzer Tool使用示例
地址:http://blog.csdn.net/yanghongchang_/article/details/7711911 以下是一个会导致java.lang.OutOfMemoryError: J ...
- 转载:.NET Memory Leak: XmlSerializing your way to a Memory Leak
原文地址:http://blogs.msdn.com/b/tess/archive/2006/02/15/532804.aspx I hate to give away the resolution ...
- 皮质学习 HTM 知多少
目录 Hierarchical Temporal Memeory 0.1 引言 历史 HTM 概览 HTM的层级结构 神经元 HTM 端对端应用框架[^8] 数据编码[^1] 数据编码 数据输入 树突 ...
- 应用层级时空记忆模型(HTM)实现对实时异常流时序数据检测
应用层级时空记忆模型(HTM)实现对实时异常流时序数据检测 Real-Time Anomaly Detection for Streaming Analytics Subutai Ahmad SAHM ...
- 25个Java机器学习工具&库--转载
本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法.这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用.Weka包括一系列的工具,如数据预 ...
- 如何利用AI识别未知——加入未知类(不太靠谱),检测待识别数据和已知样本数据的匹配程度(例如使用CNN降维,再用knn类似距离来实现),将问题转化为特征搜索问题而非决策问题,使用HTM算法(记忆+模式匹配预测就是智能),GAN异常检测,RBF
https://www.researchgate.net/post/How_to_determine_unknown_class_using_neural_network 里面有讨论,说是用rbf神经 ...
- 储存技术(SLC、MLC、TLC和QLC的NAND闪存技术)和Optane Memory
1.转载:Optane Memory 2.构成SSD的主要IC有主控芯片和NAND闪存,SLC.MLC和TLC三者都是闪存的类型 需要说明的闪存的寿命指的是写入(擦写)的次数,不是读出的次数,因为读取 ...
- PatentTips - Mechanisms for strong atomicity in a transactional memory system
BACKGROUND Advances in semi-conductor processing and logic design have permitted an increase in the ...
- Basic Memory Structures
Basic Memory Structures The basic memory structures associated with Oracle Database include: System ...
随机推荐
- 【系列】 2-SAT
bzoj 1997 Planar 题目大意: 给一个存在曼哈顿回路的无向图,求该图是否为平面图 思路: 先把曼哈顿回路提出来,则剩下的边的两个端点若有$ABAB$的形式则这两条边必定一个在环外一个在环 ...
- 「NOIP2014」「LuoguP2296」 寻找道路
Description 在有向图 G 中,每条边的长度均为 1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 路径上的所有点的出边所指向的点都直接或间接与终点连通. 在 ...
- 传统开发有必要学Dubbo吗
dubbo作为一个知名的分布式服务调用框架,在众多互联网公司都有广泛的应用.但其本质还是一个远程服务调用框架,最初就是为了应对SOA服务治理时才用到的,如果本身服务不多就没必要用它了.如果对技术感兴趣 ...
- 漫谈WebQQ 协议
阅读目录 1,WEBQQ的登陆协议 2,传说中的心跳包 3,获得群,好友, 4实战(盗号-外挂-广告) 要说怎么突然研究起WEBQQ,也是比较偶然的机会,因为前一份工作专注于B2 ...
- 1 model的创建
extJs数据模型之Model博客分类: ExtJs 1 model的创建 //我们利用Ext.define来创建我们的模型类 //DB table person(name,age,email) ...
- Java必知必会:异常机制详解
一.Java异常概述 在Java中,所有的事件都能由类描述,Java中的异常就是由java.lang包下的异常类描述的. 1.Throwable(可抛出):异常类的最终父类,它有两个子类,Error与 ...
- FTP相关内容
FTP相关介绍 FTP 1)File Transfer Protocol ( FTP ) 是相当古老的网络协议之一,他最主要的功能就是进行 Server端与 Client 端之间的档案传送的功能.这个 ...
- 从ao神处偷取的头文件
#include<bits/stdc++.h> using namespace std; #define ll long long #define ull unsigned long lo ...
- Hmz 的女装(递推)
Hmz 的女装 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total Sub ...
- hdoj5671 BestCoder Round #81 (div.2)
对于交换行.交换列的操作,分别记录当前状态下每一行.每一列是原始数组的哪一行.哪一列即可. 对每一行.每一列加一个数的操作,也可以两个数组分别记录.注意当交换行.列的同时,也要交换增量数组. 输出时通 ...