python(6):Scipy之pandas
pandas下面的数据结构是Series , DataFrame
在字典中, key 与 value对应, 但是key value 不是独立的, 但是在Series 中index 与value 是独立的, 它在某些应用中国有比字典更加强大的功能.
(一)Series
Series是有序一维数组, 由 数据+索引 组成
import pandas as pd
s=pd.Series([1,2.0,'a'])
print(s)
#0 1
#1 2
#2 a
自带索引 0 ,1, 2...
也可以自己设置索引, 访问数据就是 s[idx]
import pandas as pd
s=pd.Series(['apple','pig','table'],index=[1,2,3])
print(s)
#1 apple
#2 pig
#3 table
print(s[1]) # apple 访问数据
简单计算
import numpy as np
import pandas as pd
y=pd.Series([3,5,6],index=['a','b','c'])
print(y)
#a 3
#b 5
#c 6
print(y[1]) #
print(y*2)#作用在value上 变6 10 12
yy=np.exp(y)
print(yy)
#a 20.085537
#b 148.413159
#c 403.428793
Series的数据对齐
data={'A':100,'B':90} #字典
sindex=['A','B','C']
x=pd.Series(data,index=sindex)
# 'c'这个索引在data中没有 则value=nan
print(x)
print(x.index)
print(x.values)
print(pd.isnull(x)) # 检测哪些值是空的
A 100.0
B 90.0
C NaN
dtype: float64
Index(['A', 'B', 'C'], dtype='object')
[100. 90. nan]
A False
B False
C True
dtype: bool
两个Series相加会怎么样?
import pandas as pd
a=pd.Series([20,21,42],index=['a','b','c'])
b=pd.Series([20,18,40],index=['a','e','c'])
a+b
#a 40.0
#b NaN
#c 82.0
#e NaN
#dtype: float64
相同index 的相加, a,b 中非共有的用nan
pandas还可以产生时间序列
import pandas as pd
dates=pd.date_range('',periods=5) #每一天,包括周末
print(dates)
DatetimeIndex(['2017-12-11', '2017-12-12', '2017-12-13', '2017-12-14',
'2017-12-15'],
dtype='datetime64[ns]', freq='D').
(二) DataFrame
pandas的模块中 Series对应一维序列, DataFrame 对应表格型的数据结构
可以把DataFrame 看成是共用同一个index 的Series 集合
import numpy as np
import pandas as pd
# 由array 创建
d1=pd.DataFrame(np.random.randn(3,3),index=range(1,4),columns=list('ABC'))
print(d1)
#由字典创建DataFrame
d2={'name':['alice','mike','jason'],'pay':[10,20,30]} #默认index是从0开始的0 1 2 ..
d2=pd.DataFrame(d2)
print(d2)
A B C
1 -0.024970 0.681228 -1.575077
2 -0.470925 1.239218 2.425803
3 0.758001 -0.179529 -0.535435
name pay
0 alice 10
1 mike 20
2 jason 30
上述d2的分析
print(d2.index) # 行索引 RangeIndex(start=0, stop=3, step=1)
print(d2.columns) # 列索引 Index(['name', 'pay'], dtype='object')
print(d2.values) # 3*2
#[['alice' 10]
# ['mike' 20]
# ['jason' 30]]
d2.index=[1,3,5] #修改索引
d2['name']='alice' # 将name列的数据全部改为了alice
del d2['pay'] # 删除一列
查看数据
import pandas as pd
import numpy as np
d3=np.array([('a',100),('b',200),('c',300)])
d3=pd.DataFrame(d3,index=range(1,4),columns=['name','pay'])
print(d3['name'])#访问name 那一列,也可以print(d3.name)
#1 a
#2 b
#3 c
print(d3.iloc[:2,1])#前两行,value的第2列元素
#1 100
#2 200
统计功能
d3.pay.min() # 最低工资的值
Out[127]: '' d3[d3.pay>''] # 工资大于180的人
Out[129]:
name pay
2 b 200
3 c 300
实例: 加总每个人的工资
import pandas as pd
index=[1,2,3,4]
h=np.array([('alice',4),('kitty',3),('bob',6),('nancy',2)])
hi=pd.DataFrame(h,index,columns=['name','pay'])
print(hi)
#for i in range(1,len(hi)+1): #报错!!
# print(hi[i])
xx=hi.pay # 也是一个DataFrame
for i in range(1,len(xx)+1): #由于index是从1开始的
print(xx[i])
xx[i]=float(xx[i]) # 为了后续的加总 print(hi.groupby('name').sum()) #将重复的放在一起,A 出现两次加总为一项! 42
print(hi)#不改变原来的hi
name pay
1 alice 4
2 kitty 3
3 bob 6
4 alice 2
4
3
6
2
pay
name
alice 6.0
bob 6.0
kitty 3.0
(三) pandas中的作图
import numpy as np
import matplotlib.pyplot as plt
x=np.linspace(0,1)
print(len(x)) #
y=np.sin(4*np.pi*x)*np.exp(-5*x)
plt.plot(x,y,'o')
fig = plt.figure() #新建一个图形窗口,否则会画在一起
a=pd.Series([10,15,2,3,5])
plt.plot(a)

实例
import pandas as pd
a=[(10,12),(15,7),(2,9)]
b=[1,2,3]
data=pd.DataFrame(a,index=b,columns=['v1','v2'])
data.plot() #两条线
结果

import pandas as pd
import matplotlib.pyplot as plt
a=pd.Series([10,23,12,34,16])
x=a.index
y=a.values
plt.plot(x,y,'r--')
plt.title('line')
plt.xlabel('time')
plt.ylabel('quantity') t=np.arange(0.,4.,0.01) # 画在一起的
plt.plot(t,t,t,t+1,t,t**2) #三条曲线
python(6):Scipy之pandas的更多相关文章
- ubantu下安装pip,python,pycharm,numpy,scipy,matplotlibm,pandas 以及sklearn
ubuntu 安装 pip 及 pip 常用命令: https://blog.csdn.net/danielpei1222/article/details/62969815 ubuntu下不同版本py ...
- python安装numpy和pandas
最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装numpy和pandas因为linux环境没有外网遇到了很多问题就记下来了.首要条件,python版本必须 ...
- python(5):scipy之numpy介绍
python 的scipy 下面的三大库: numpy, matplotlib, pandas scipy 下面还有linalg 等 scipy 中的数据结构主要有三种: ndarray(n维数组), ...
- [转] python安装numpy和pandas
最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装numpy和pandas因为linux环境没有外网遇到了很多问题就记下来了.首要条件,python版本必须 ...
- Ubuntu16.04下安装配置numpy,scipy,matplotlibm,pandas 以及sklearn+深度学习tensorflow配置+Keras2.0.6(非Anaconda环境)
1.ubuntu镜像源准备(防止下载过慢): 参考博文:http://www.cnblogs.com/top5/archive/2009/10/07/1578815.html 步骤如下: 首先,备份一 ...
- python及numpy,pandas易混淆的点
https://blog.csdn.net/happyhorizion/article/details/77894035 初接触python觉得及其友好(类似matlab),尤其是一些令人拍案叫绝不可 ...
- 【转载】python安装numpy和pandas
转载:原文地址 http://www.cnblogs.com/lxmhhy/p/6029465.html 最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装 ...
- numpy、scipy、pandas
以下分别是numpy.Scipy.pandas的简介.虽然这些包提供的一些结构比python自身的“更高级.更高效”,更高级是因为它们能完成更高级的任务,但是,学习的时候尽量不要和python割裂开认 ...
- Anaconda 安装和使用Numpy、Scipy、pandas、Scikit-learn
Anaconda 安装和使用 https://www.cnblogs.com/liruihuan/p/9101613.html 最近看了些关于数据分析的书,想系统的整理下相关知识,算是学习笔记吧,也希 ...
随机推荐
- javascript判断节点是否在dom
在项目中碰到同事写的一段代码: //焦点必须在实时dom树中 if (ele && typeof this.document.contains === "function&q ...
- day 9 - 2 函数练习
1.写函数,检查获取传入列表或元组对象的所有奇数位索引对应的元素,并将其作为新列表返回给调用者. def func(lis): print(lis[1::2]) #取偶数 return lis[::2 ...
- Java8新特性(待更新...)
一.Lambda表达式 二.接口的默认方法与静态方法 三.方法引用 四.重复注解 五.扩展注解的支持 六.Optional 七.Stream 八.Date/Time API (JSR 310) 九.J ...
- .net+mvc,ueditor
.net+mvc的百度编辑器ueditor 一.下载百度编辑器:http://ueditor.baidu.com/website/download.html 选择.net版本 二.解压后在mvc项目中 ...
- IDEA-使用技巧
IDEA--个性化配置 - 心飞扬的博客 - CSDN博客--里面很好,http://blog.csdn.net/afzaici/article/details/71524643 IntelliJ I ...
- XML解析技术-dom4j
- 20165231 2017-2018-2 《Java程序设计》第7周学习总结
教材学习内容总结 第十一章 MySQL数据库管理系统,简称MySQL,是世界上最流行的开源数据库管理系统,其社区版(MySQL Community Edition)是最流行的免费下载的开源数据库管理系 ...
- 查找轮廓(cv2.findCountours函数)
1.输入为二值图像,黑色为背景,白色为目标 2.该函数会修改原图像,因此若想保留原图像在,则需拷贝一份,在拷贝图里修改. 一.查找轮廓 cv2.findContours() 三个输入参数:输入图像(二 ...
- Python3-IO模型
IO模型 IO模型介绍 阻塞IO(blocking IO) 非阻塞IO(non-blocking IO) 多路复用IO(IO multiplexing) 异步IO(Asynchronous I/O) ...
- jquery $.trim()去除字符串空格
语法jQuery.trim()函数用于去除字符串两端的空白字符. 作用该函数可以去除字符串开始和末尾两端的空白字符(直到遇到第一个非空白字符串为止).它会清除包括换行符.空格.制表符等常见的空白字符. ...