题意: 给出一个N*N的地图N   地图里面有K个障碍     你每次可以选择一条直线 消除这条直线上的所有障碍  (直线只能和列和行平行)

问最少要消除几次

题解: 如果(x,y)上有一个障碍 则把X加入点集 V1 、Y加入点集V2   并且X Y连一条边  这样构成一个新图

如果选择 V1中的点 X 那么就相当于消去 (X,y)中的所有Y    要找使最小点覆盖 那就是跑一遍 匈牙利就行了 详细证明见二分图最小点覆盖König定理

其中 x y需要连单向边 不然会造成混乱 因为x=1 y=1是不同的含义

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=;
int n,k;
int mp[maxn][maxn];
int girl[maxn];
int used[maxn];
bool find(int x){
int i,j;
for(j=;j<=n;j++){
if(mp[x][j]==&&used[j]==){
used[j]=;
if(girl[j]==||find(girl[j])){
girl[j]=x;
return ;
}
}
}
return ;
}
int main(){
cin>>n>>k;
for(int i=;i<=k;i++){
int a,b;
scanf("%d%d",&a,&b);//建边
mp[a][b]=;
}
int sum=;
for(int i=;i<=n;i++){
memset(used,,sizeof(used));//每次要初始化 因为used是用于判断之前有没有用过 什么叫之前有没用用过 比如进入3的递归,used[2]=1,3 和2匹配 2已经在之前已经有归属了 现在要进行拆边 find(girl(j)) 此时假设girl(j)=5,5就不能和2匹配了,因为现在进行拆边操作时逻辑上已经认定 上层递归的used[2]=1 已经用了2
if(find(i))sum++;
}
cout<<sum<<endl;
return ;
}

Asteroids POJ - 3041 匈牙利算法+最小点覆盖König定理的更多相关文章

  1. POJ 3041 Asteroids(二分图 && 匈牙利算法 && 最小点覆盖)

    嗯... 题目链接:http://poj.org/problem?id=3041 这道题的思想比较奇特: 把x坐标.y坐标分别看成是二分图两边的点,如果(x,y)上有行星,则将(x,y)之间连一条边, ...

  2. POJ 3041 匈牙利算法模板题

    一开始预习是百度的算法 然后学习了一下 然后找到了学长的ppt 又学习了一下.. 发现..居然不一样... 找了模板题试了试..百度的不好用 反正就是wa了..果然还是应当跟着学长混.. 图两边的点分 ...

  3. 最小点覆盖(König定理)

    König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数.如果你还不知道什么是最小点覆盖,我也在这里说一下:假如选了一个点就相当于覆盖了以它为端点的所有 ...

  4. 二分图最小点覆盖König定理的简单证明 (加入自己理解)

    第一次更改:http://blog.sina.com.cn/s/blog_51cea4040100h152.html 讲的更细致 增广路:https://blog.csdn.net/qq_374572 ...

  5. Asteroids POJ - 3041 二分图最小点覆盖

       Asteroids POJ - 3041 Bessie wants to navigate her spaceship through a dangerous asteroid field in ...

  6. Asteroids POJ - 3041

    Asteroids POJ - 3041 题目大意:N*N的地图里,存在一些小行星,Bessie有个很牛x但又很耗蓝的武器,一次可以消灭一行或者一列的所有小行星,问最少使用多少次这个武器可以消灭所有的 ...

  7. poj - 3041 Asteroids (二分图最大匹配+匈牙利算法)

    http://poj.org/problem?id=3041 在n*n的网格中有K颗小行星,小行星i的位置是(Ri,Ci),现在有一个强有力的武器能够用一发光速将一整行或一整列的小行星轰为灰烬,想要利 ...

  8. Asteroids POJ - 3041 【最小点覆盖集】

    Bessie wants to navigate her spaceship through a dangerous asteroid field in the shape of an N x N g ...

  9. poj3041 Asteroids 匈牙利算法 最小点集覆盖问题=二分图最大匹配

    /** 题目:poj3041 Asteroids 链接:http://poj.org/problem?id=3041 题意:给定n*n的矩阵,'X'表示障碍物,'.'表示空格;你有一把枪,每一发子弹可 ...

随机推荐

  1. 【开源】Skatch 正式发布 - 极速渲染抽象派草图

    极速渲染抽象派草图 DEMO Simple Letter 简介 Skatch 这个词由 sketch wechart abstract cax 混合而成的一个新词,代表了cax wechart 抽象艺 ...

  2. ASP.NET MVC5+EF6+EasyUI 后台管理系统-WebApi的用法与调试

    1:ASP.NET MVC5+EF6+EasyUI 后台管理系统(1)-WebApi与Unity注入 使用Unity是为了使用我们后台的BLL和DAL层 2:ASP.NET MVC5+EF6+Easy ...

  3. Appium-实现手势密码登陆

    前言: 前几天有人问我,手势登陆如何做?于是我找了一个APP试了试,所以本文来总结使用Python+Appium来实现手势密码登陆APP. 环境: MacOS:10.13.4 Appium-deskt ...

  4. 网络编程-Socket介绍

    Socket介绍 什么是socket?(5分钟) Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口.在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议 ...

  5. ES使用C#添加和更新文档

    ElasticSearch 使用C#添加和更新文档 这是ElasticSearch 2.4 版本系列的第四篇: 第一篇:ES1:Windows下安装ElasticSearch 第二篇:ES2:Elas ...

  6. PAT L3-010 是否完全二叉搜索树

    https://pintia.cn/problem-sets/994805046380707840/problems/994805049870368768 将一系列给定数字顺序插入一个初始为空的二叉搜 ...

  7. cent6.x配置主机名及静态网络

    # 修改网卡名为NAME="eth0" [root@jenkins ~]# -persistent-net.rules # This file was automatically ...

  8. API接口TOKEN设计

    首先需要知道API是什么?   API(Application Programming Interface)即应用程序接口.你可以认为 API 是一个软件组件或是一个 Web 服务与外界进行的交互的接 ...

  9. # 【Python3练习题 008】判断101-200之间有多少个素数,并输出所有素数。

    lst = []for i in range(100): #建立 101-200 的列表 lst.append(101+i) for i in range(101, 201): #除数为 101-20 ...

  10. js-XMLHttpRequest 2级

    ###1. XMLHttpRquest 2级 1)   FormData 现代web应用中频繁使用的一项功能就死表单数据的序列化, XMLHttpRquest 2级为此定义了FormData类型 Fo ...