显然构造出生成函数,对体积v的物品,生成函数为1+xv+x2v+……=1/(1-xv)。将所有生成函数乘起来得到的多项式即为答案,设为F(x),即F(x)=1/∏(1-xvi)。但这个多项式的项数是Σvi级别的,无法直接分治FFT卷起来。

  我们要降低多项式的次数,于是考虑取对数,化乘为加,得到lnF(x)=-Σln(1-xvi)。只要对每个多项式求出ln加起来再exp回去即可。

  考虑怎么对这个特殊形式的多项式求ln。对ln(1-xv)求导,得ln(1-xv)'=(1-xv)'/(1-xv)=-vxv-1/(1-xv)=-vΣx(k+1)v-1,再积分得-vΣx(k+1)v/(k+1)v=-Σxkv/k(k>=1)。注意到由调和级数,总共只有mlogm项要加起来。然后多项式exp即可得到F(x)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define P 998244353
#define N 140010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,t,a[N],f[N<<2],g[N<<2],x[N<<2],y[N<<2],r[N<<2],A[N<<2],B[N<<2];
int ksm(int a,int k)
{
int s=1;
for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
return s;
}
int inv(int a){return ksm(a,P-2);}
void DFT(int *a,int n,int g)
{
for (int i=0;i<n;i++) r[i]=(r[i>>1]>>1)|(i&1)*(n>>1);
for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=2;i<=n;i<<=1)
{
int wn=ksm(g,(P-1)/i);
for (int j=0;j<n;j+=i)
{
int w=1;
for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>1)]%P;
a[k]=(x+y)%P,a[k+(i>>1)]=(x-y+P)%P;
}
}
}
}
void IDFT(int *a,int n)
{
DFT(a,n,inv(3));
int u=inv(n);
for (int i=0;i<n;i++) a[i]=1ll*a[i]*u%P;
}
void mul(int *a,int *b,int n)
{
DFT(a,n,3),DFT(b,n,3);
for (int i=0;i<n;i++) a[i]=1ll*a[i]*b[i]%P;
IDFT(a,n);
}
void Inv(int *a,int *b,int n)
{
if (n==1) {for (int i=0;i<t;i++) b[i]=0;b[0]=inv(a[0]);return;}
Inv(a,b,n>>1);
for (int i=0;i<n;i++) A[i]=a[i];
for (int i=n;i<(n<<1);i++) A[i]=0;
n<<=1;
DFT(A,n,3),DFT(b,n,3);
for (int i=0;i<n;i++) b[i]=1ll*b[i]*(P+2-1ll*A[i]*b[i]%P)%P;
IDFT(b,n);
n>>=1;
for (int i=n;i<(n<<1);i++) b[i]=0;
}
void trans(int *a,int *b,int n){for (int i=0;i<n;i++) b[i]=1ll*a[i+1]*(i+1)%P;}
void dx(int *a,int *b,int n){b[0]=0;for (int i=1;i<n;i++) b[i]=1ll*a[i-1]*inv(i)%P;}
void Ln(int *a,int t)
{
memset(x,0,sizeof(x)),memset(y,0,sizeof(y));
trans(a,x,t);Inv(a,y,t>>1);mul(x,y,t);dx(x,a,t);
}
void Exp(int *a,int *b,int n)
{
if (n==1){for (int i=0;i<t;i++) b[i]=0;b[0]=1;return;}
Exp(a,b,n>>1);
for (int i=0;i<(n>>1);i++) B[i]=b[i];
for (int i=(n>>1);i<n;i++) B[i]=0;
Ln(B,n);
for (int i=0;i<n;i++) B[i]=(P-B[i]+a[i])%P;
B[0]=(B[0]+1)%P;
for (int i=n;i<(n<<1);i++) B[i]=0;
mul(b,B,n<<1);
for (int i=n;i<(n<<1);i++) b[i]=0;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bag.in","r",stdin);
freopen("bag.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=1;i<=n;i++) a[read()]++;n=m;
for (int i=1;i<=n;i++)
for (int j=i;j<=n;j+=i)
f[j]=(f[j]+1ll*a[i]*inv(j/i))%P;
int t=1;while (t<=(n<<1)) t<<=1;
Exp(f,g,t);
for (int i=1;i<=m;i++) printf("%d\n",g[i]);
return 0;
}

  

Luogu4389 付公主的背包(生成函数+多项式exp)的更多相关文章

  1. 洛谷P4389 付公主的背包--生成函数+多项式

    题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\) ...

  2. [luogu4389]付公主的背包(多项式exp)

    完全背包方案计数问题的FFT优化.首先写成生成函数的形式:对重量为V的背包,它的生成函数为$\sum\limits_{i=0}^{+\infty}x^{Vi}=\frac{1}{1-x^{V}}$于是 ...

  3. luogu4389 付公主的背包

    题目链接:洛谷 题目大意:现在有$n$个物品,每种物品体积为$v_i$,对任意$s\in [1,m]$,求背包恰好装$s$体积的方案数(完全背包问题). 数据范围:$n,m\leq 10^5$ 这道题 ...

  4. 洛谷P4389 付公主的背包 [生成函数,NTT]

    传送门 同样是回过头来发现不会做了,要加深一下记忆. 思路 只要听说过生成函数的人相信第一眼都可以想到生成函数. 所以我们要求 \[ ans=\prod \sum_n x^{nV}=\prod \fr ...

  5. 洛谷 P4389 付公主的背包 解题报告

    P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\ ...

  6. LuoguP4389 付公主的背包【生成函数+多项式exp】

    题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m ...

  7. 【Luogu4389】付公主的背包

    题目 传送门 解法 答案显然是\(n\)个形如\(\sum_{i \geq 1} x^{vi}\)的多项式的卷积 然而直接NTT的时间复杂度是\(O(nm\log n)\) 我们可以把每个多项式求\( ...

  8. LOJ6077「2017 山东一轮集训 Day7」逆序对 (生成函数+多项式exp?朴素DP!)

    题面 给定 n , k n,k n,k ,求长度为 n n n 逆序对个数为 k k k 的排列个数,对 1 e 9 + 7 \rm1e9+7 1e9+7 取模. 1 ≤ n , k ≤ 100   ...

  9. luoguP4389 付公主的背包 多项式exp

    %%%dkw 话说这是个论文题来着... 考虑生成函数\(OGF\) 对于价值为\(v\)的物品,由于有\(10^5\)的件数,可以看做无限个 那么,其生成函数为\(x^0 + x^{v} + x^{ ...

随机推荐

  1. HAProxy 参数配置

    RabbitMQ集群部署完成,通过HAProxy反向代理来提供统一的对RabbitMQ的访问入口. 1.Haproxy提供高可用性.负载均衡,以及基于TCP和HTTP的应用程序代理.(负载均衡策略有很 ...

  2. mysql 中Varchar 与char的区别

    一.字符与字节与编码关系 ASCII码中,一个英文字母(不分大小写)占一个字节的空间,一个中文汉字占两个字节的空间.一个二进制数字序列,在计算机中作为一个数字单元,一般为8位二进制数,换算为十进制.最 ...

  3. adb通过wifi连接android设备

    问题背景 近期的项目测试中,需要将移动设备与厂商机器进行usb连接视频传输(投屏).测试过程中需要定位问题,经常需要查看实时日志,移动设备已经和厂商机器usb连接投屏,无法用usb连接到PC,那么有什 ...

  4. java.lang.LinkageError: JAXB 2.0 API is being loaded from the bootstrap classloader

    我的解决办法:    1.如果是application工程,则在程序中打印出         system.out.println(System.getProperty("java.endo ...

  5. Python之参数类型、变量

    一.参数类型 (一)形参与实参 要使用局部变量时,只能通过return的方式返回 def my(name): #函数体 return name my('lrx') #name是形参,lrx是实参 不写 ...

  6. Ubuntu Linux Recovery Mode

    在安全模式/修復模式有以下的選項︰resume Resume normal boot繼續正常啟動作業,供不小心誤入此選單的使用者開機使用.(继续以正常模式启动) clean Try to make f ...

  7. 18-vue-cli脚手架项目中组件的使用

    在webpack-simple模板中,包括webpck模板.一个.vue文件就是一个组件. 为什么会这样呢?因为webpack干活了!webpack的将我们所有的资源文件进行打包.同时webpack还 ...

  8. YOLO.h5 下载

    链接:https://pan.baidu.com/s/1sTxkuaFWXqT4yXLHQ9BgUA 密码:ga0o fhwayd_w1231234asd><321$%

  9. C#复习笔记(3)--C#2:解决C#1的问题(结束C#2的内容:最后一些特性)

    结束C#2的内容:最后一些新性 这是本章要讲的内容: 分部类型:可以在多个源文件中为 一个类型编写代码. 特别适用于部分代码是自动生成, 而其他部分的代码为手写的类型. 静态类:对工具类进行整理, 以 ...

  10. Java Integer 与 int 深刻理解

    今天在做Object 自动转为Integer 类型之后的判断,遇到一个不理解的点,当数值超过127之后,两个数值相同的Object 对象用 == 判断的结果是false. Object a = 128 ...