A1066. Root of AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.


Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print ythe root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef struct NODE{
struct NODE* lchild, *rchild;
int key;
int height;
}node;
int getHeight(node* root){
if(root == NULL)
return ;
else return root->height;
}
void updateHeight(node *root){
root->height = max(getHeight(root->lchild), getHeight(root->rchild)) + ;
}
void L(node* &root){
node* temp = root;
root = root->rchild;
updateHeight(root);
temp->rchild = root->lchild;
root->lchild = temp;
updateHeight(temp);
}
void R(node* &root){
node *temp = root;
root = root->lchild;
updateHeight(root);
temp->lchild = root->rchild;
root->rchild = temp;
updateHeight(temp);
}
void insert(node* &root, int key){
if(root == NULL){ //此处可获得插入节点的信息
node* temp = new node;
temp->lchild = NULL;
temp->rchild = NULL;
temp->key = key;
temp->height = ;
root = temp;
return;
}
if(key < root->key){ //此处可获得距离插入节点最近得父节点得信息
insert(root->lchild, key);
updateHeight(root);
if(abs(getHeight(root->lchild) - getHeight(root->rchild)) == ){
if(getHeight(root->lchild->lchild) > getHeight(root->lchild->rchild)){
R(root);
}else{
L(root->lchild);
R(root);
}
}
}else{
insert(root->rchild, key);
updateHeight(root);
if(abs(getHeight(root->lchild) - getHeight(root->rchild)) == ){
if(getHeight(root->rchild->rchild) > getHeight(root->rchild->lchild)){
L(root);
}else{
R(root->rchild);
L(root);
}
}
}
}
int main(){
int N, key;
scanf("%d", &N);
node* root = NULL;
for(int i = ; i < N; i++){
scanf("%d", &key);
insert(root, key);
}
printf("%d", root->key);
cin >> N;
return ;
}
总结:
1、题意:按照题目给出的key的顺序,建立一个平衡二叉搜索树。
2、二叉搜索树的几个关键地方:
- 每个节点使用height来记录自己的高度,叶节点高度为1;
- 获得某个节点高度的函数,主要是由于在获取平衡因子时,有些树的子树是空的,需要返回0,为避免访问空指针,获取节点高度都要通过该函数而非height字段。
- 更新当前节点的高度,应更新为左右子树的最大高度+1。
- 左旋与右旋:一定是三步操作而不是两步(不要忘记新的root的原子树)。注意更新节点高度的先后顺序。
- 插入与建树:插入操作基于二叉搜索树的插入。在root = NULL时进行新建节点并插入,在此处可以获得插入节点的信息。而在递归插入语句处,可以获取插入A节点之后距离A节点最近的父节点。因此在递归插入结束后就要对该节点进行更新高度,并在此处更新完之后检查平衡因子,并做LL、LR、RR、RL旋转。
3、对rootA的左子树做插入,导致rootA的左子树与右子树高度差为2,则对以rootA为根的树旋转。
4、调试的时候,可以取很少的几个节点,然后画出调试过程中树的形状。
A1066. Root of AVL Tree的更多相关文章
- PAT甲级——A1066 Root of AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT_A1066#Root of AVL Tree
Source: PAT A1066 Root of AVL Tree (25 分) Description: An AVL tree is a self-balancing binary search ...
- 04-树5 Root of AVL Tree + AVL树操作集
平衡二叉树-课程视频 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the tw ...
- PAT 1066 Root of AVL Tree[AVL树][难]
1066 Root of AVL Tree (25)(25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, ...
- PTA (Advanced Level) 1066 Root of AVL Tree
Root of AVL Tree An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of ...
- PAT甲级1066. Root of AVL Tree
PAT甲级1066. Root of AVL Tree 题意: 构造AVL树,返回root点val. 思路: 了解AVL树的基本性质. AVL树 ac代码: C++ // pat1066.cpp : ...
- 04-树4. Root of AVL Tree (25)
04-树4. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue An A ...
- pat04-树4. Root of AVL Tree (25)
04-树4. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue An A ...
- pat1066. Root of AVL Tree (25)
1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...
随机推荐
- 缓存session,cookie,sessionStorage,localStorage的区别
https://www.cnblogs.com/cencenyue/p/7604651.html(copy) 浅谈session,cookie,sessionStorage,localStorage的 ...
- CentOS7安装k8s
借鉴博客:https://www.cnblogs.com/xkops/p/6169034.html 此博客里面有每个k8s配置文件的注释:https://blog.csdn.net/qq_359048 ...
- nodejs 利用zip-local模块压缩文件夹
var zipper = require("zip-local"); zipper.sync.zip("./folder").compress().save(& ...
- QTP自动化测试-笔记 注释、大小写
1 rem 注释内容 2 ' 注释内容 3 快捷键注释-选择代码行-ctrl+M 4 ctrl+shift+同- 取消注释 大小写 qtp:对小写敏感:如果 变量.sheet页是用小写字母命名,则使用 ...
- Python——Flask框架——模板
一.渲染模板 render_template 函数把Jinja2模板引擎集成到程序中 二.Jinja2变量过滤器 过滤器名 说明 safe 渲染值是不转义 capitalize 把值得首字母转换成大写 ...
- [oracle] to_date() 与 to_char() 日期和字符串转换
to_date("要转换的字符串","转换的格式") 两个参数的格式必须匹配,否则会报错. 即按照第二个参数的格式解释第一个参数. to_char(日期,& ...
- webpack始出来
一直想好好整理一下webpack,现在就整理吧. 总结自己的实际搭建的整理情况,我还是要先对自己说一句,以后给文件夹起名字的时候不要用一些特殊的关键字,比如我在做这个demo的时候,我用的文件夹名称叫 ...
- 转载 大话pcie
原文https://blog.csdn.net/abcamus/article/details/76167747 一.PCIe DMA机制 PCIe控制器也提供DMA(Direct Memory ac ...
- 双系统windows+linux如何正确删除linux
双系统windows+linux如何正确删除linux 2017年11月16日 10:42:49 dovepym 阅读数:26363 之前在windows的基础上又安装了ubuntu系统16.04 ...
- mosquitto发布消息
./mosquitto_pub -t '$SYS/broker/clients/status/online' -m 1