Solutioon

这道题利用根号分治可以把复杂度降到n根号n级别。

我们发现当物品体积大与根号n时,就是一个完全背包,换句话说就是没有了个数限制。

进一步我们发现,这个背包最多只能放根号n个物品。

所以我们设dp[i][j]表示放了i个物品,体积为j时的方案数。

转移的话一种是往背包里放一个新物品,或者让背包里所有物品体积加1.

当物品体积小于根号n时,因为物品个数比较少,所以我们可以设计状态为dp[i][j]表示前i个物品,占用j的体积为j时的方案数。

然后我们发现它的同类转移点是在模i的剩余系下是相等的,所以我们按照余数分组dp一下。

code

#include<iostream>
#include<cstdio>
#include<cmath>
#define N 100002
using namespace std;
typedef long long ll;
const int mod=;
int f[][N],g[][N],s[N],sum[N],ji[N],ans;
int n,n1;
int main(){
scanf("%d",&n);n1=sqrt(n);
for(int i=;i<=n1;++i)
g[][]=;s[]=;
for(int i=;i<=n1;++i)
for(int j=;j<=n;++j){
if(j>=i)(g[i][j]+=g[i][j-i])%=mod;
if(j>=n1+)(g[i][j]+=g[i-][j-n1-])%=mod;
(s[j]+=g[i][j])%=mod;
}
f[][]=;
for(int i=;i<=n1;++i)
for(int j=;j<i;++j){
int tot=;
for(int k=j;k<=n;k+=i){
ji[++tot]=f[i-][k];
sum[tot]=(sum[tot-]+ji[tot])%mod;
(f[i][k]+=(sum[tot]-sum[max(,tot-i-)]+mod))%=mod;
}
}
for(int i=;i<=n;++i)(ans+=1ll*s[i]*f[n1][n-i]%mod)%=mod;
cout<<ans;
return ;
}

LOJ6089 小Y的背包计数问题(根号优化背包)的更多相关文章

  1. [loj6089]小Y的背包计数问题

    https://www.zybuluo.com/ysner/note/1285358 题面 小\(Y\)有一个大小为\(n\)的背包,并且小\(Y\)有\(n\)种物品. 对于第\(i\)种物品,共有 ...

  2. LOJ6089 小Y的背包计数问题 背包、根号分治

    题目传送门 题意:给出$N$表示背包容量,且会给出$N$种物品,第$i$个物品大小为$i$,数量也为$i$,求装满这个背包的方案数,对$23333333$取模.$N \leq 10^5$ $23333 ...

  3. loj6089 小 Y 的背包计数问题

    link 吐槽: 好吧开学了果然忙得要死……不过为了证明我的blog还没有凉,还是跑来更一波水题 题意: 有n种物品,第i种体积为i,问装满一个大小为n的背包有多少种方案? $n\leq 10^5.$ ...

  4. LOJ6089 小Y的背包计数问题 背包

    正解:背包 解题报告: 先放传送门! 好烦昂感觉真的欠下一堆,,,高级数据结构知识点什么的都不会,基础又麻油打扎实NOIp前的题单什么的都还麻油刷完,,,就很难过,,,哭辣QAQ 不说辣看这题QwQ! ...

  5. 【LOJ6089】小Y的背包计数问题(动态规划)

    [LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...

  6. LOJ #6089. 小 Y 的背包计数问题

    LOJ #6089. 小 Y 的背包计数问题 神仙题啊orz. 首先把数分成\(<=\sqrt n\)的和\(>\sqrt n\)的两部分. \(>\sqrt n\)的部分因为最多选 ...

  7. LOJ#6089 小 Y 的背包计数问题 - DP精题

    题面 题解 (本篇文章深度剖析,若想尽快做出题的看官可以参考知名博主某C202044zxy的这篇题解:https://blog.csdn.net/C202044zxy/article/details/ ...

  8. [BZOJ4182]Shopping (点分治+树上多重背包+单调队列优化)

    [BZOJ4182]Shopping (点分治+树上多重背包+单调队列优化) 题面 马上就是小苗的生日了,为了给小苗准备礼物,小葱兴冲冲地来到了商店街.商店街有n个商店,并且它们之间的道路构成了一颗树 ...

  9. 【luogu P4007 清华集训2017】小Y和恐怖奴隶主

    题目背景 “A fight? Count me in!” 要打架了,算我一个. “Everyone, get in here!” 所有人,都过来! 题目描述 小 Y 是一个喜欢玩游戏的 OIer.一天 ...

随机推荐

  1. CentOS查看和修改PATH环境变量的方法 profile

    https://blog.csdn.net/dongheli/article/details/83987092

  2. [转帖]Kerberos和NTLM - SQL Server

    Kerberos和NTLM - SQL Server https://www.cnblogs.com/dreamer-fish/p/3458425.html 当我们使用Windows Authenti ...

  3. bootstrap模态框动态赋值, ajax异步请求数据后给id为queryInfo的模态框赋值并弹出模态框(JS)

    /查询单个 function query(id) { $.ajax({ url : "/small/productServlet", async : true, type : &q ...

  4. C# Note12:WPF只允许数字的限制性TextBox

    在使用中,我们经常遇到文本框中只允许输入数字(整型数或浮点数...) 的情况,如果我们输入特殊字符(字母和符号...),在获取其输入值时,如果先做判断或其他处理,会直接导致application发生c ...

  5. PreparedStatement和Statement

    1 . PreparedStatement 接口继承 Statement , PreparedStatement 实例包含已编译的 SQL 语句,所以其执行速度要快于 Statement 对象. 2  ...

  6. 微信小程序登录授权并获取手机号

    一.请求发送 携带 code 到后台换取 openid var that = this; wx.login({ success(res) { console.log(res); var code = ...

  7. Spark开发第一个程序

    simon@simon-Lenovo-G400:~/.ssh$ touch authorized_keyssimon@simon-Lenovo-G400:~/.ssh$ cat id_rsa.pub ...

  8. 日志与python日志组件logging

    1. 日志的相关概念: (1)日志的作用: a. 开发人员进行程序调试 b. 开发人员定位程序故障的位置 c. 运维人员观察应用运行是否正常 (2)日志的等级 a. DEBUG 最详细的日志,用于问题 ...

  9. layui内部使用jQuery

    layui是基于jQuery的框架,本身自带jQuery 根据官方推荐,是使用自带的好一点 这里记一下内部使用jQuery的方法: layui.use('jquery', function(){ va ...

  10. 一、hadoop部署

    一.Java环境 yum 安装方式安装 1.搜索JDK安装包 yum search java|grep jdk 2.安装 yum install java-1.8.0-openjdk-src.x86_ ...