LOJ6089 小Y的背包计数问题(根号优化背包)

Solutioon
这道题利用根号分治可以把复杂度降到n根号n级别。
我们发现当物品体积大与根号n时,就是一个完全背包,换句话说就是没有了个数限制。
进一步我们发现,这个背包最多只能放根号n个物品。
所以我们设dp[i][j]表示放了i个物品,体积为j时的方案数。
转移的话一种是往背包里放一个新物品,或者让背包里所有物品体积加1.
当物品体积小于根号n时,因为物品个数比较少,所以我们可以设计状态为dp[i][j]表示前i个物品,占用j的体积为j时的方案数。
然后我们发现它的同类转移点是在模i的剩余系下是相等的,所以我们按照余数分组dp一下。
code
#include<iostream>
#include<cstdio>
#include<cmath>
#define N 100002
using namespace std;
typedef long long ll;
const int mod=;
int f[][N],g[][N],s[N],sum[N],ji[N],ans;
int n,n1;
int main(){
scanf("%d",&n);n1=sqrt(n);
for(int i=;i<=n1;++i)
g[][]=;s[]=;
for(int i=;i<=n1;++i)
for(int j=;j<=n;++j){
if(j>=i)(g[i][j]+=g[i][j-i])%=mod;
if(j>=n1+)(g[i][j]+=g[i-][j-n1-])%=mod;
(s[j]+=g[i][j])%=mod;
}
f[][]=;
for(int i=;i<=n1;++i)
for(int j=;j<i;++j){
int tot=;
for(int k=j;k<=n;k+=i){
ji[++tot]=f[i-][k];
sum[tot]=(sum[tot-]+ji[tot])%mod;
(f[i][k]+=(sum[tot]-sum[max(,tot-i-)]+mod))%=mod;
}
}
for(int i=;i<=n;++i)(ans+=1ll*s[i]*f[n1][n-i]%mod)%=mod;
cout<<ans;
return ;
}
LOJ6089 小Y的背包计数问题(根号优化背包)的更多相关文章
- [loj6089]小Y的背包计数问题
https://www.zybuluo.com/ysner/note/1285358 题面 小\(Y\)有一个大小为\(n\)的背包,并且小\(Y\)有\(n\)种物品. 对于第\(i\)种物品,共有 ...
- LOJ6089 小Y的背包计数问题 背包、根号分治
题目传送门 题意:给出$N$表示背包容量,且会给出$N$种物品,第$i$个物品大小为$i$,数量也为$i$,求装满这个背包的方案数,对$23333333$取模.$N \leq 10^5$ $23333 ...
- loj6089 小 Y 的背包计数问题
link 吐槽: 好吧开学了果然忙得要死……不过为了证明我的blog还没有凉,还是跑来更一波水题 题意: 有n种物品,第i种体积为i,问装满一个大小为n的背包有多少种方案? $n\leq 10^5.$ ...
- LOJ6089 小Y的背包计数问题 背包
正解:背包 解题报告: 先放传送门! 好烦昂感觉真的欠下一堆,,,高级数据结构知识点什么的都不会,基础又麻油打扎实NOIp前的题单什么的都还麻油刷完,,,就很难过,,,哭辣QAQ 不说辣看这题QwQ! ...
- 【LOJ6089】小Y的背包计数问题(动态规划)
[LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...
- LOJ #6089. 小 Y 的背包计数问题
LOJ #6089. 小 Y 的背包计数问题 神仙题啊orz. 首先把数分成\(<=\sqrt n\)的和\(>\sqrt n\)的两部分. \(>\sqrt n\)的部分因为最多选 ...
- LOJ#6089 小 Y 的背包计数问题 - DP精题
题面 题解 (本篇文章深度剖析,若想尽快做出题的看官可以参考知名博主某C202044zxy的这篇题解:https://blog.csdn.net/C202044zxy/article/details/ ...
- [BZOJ4182]Shopping (点分治+树上多重背包+单调队列优化)
[BZOJ4182]Shopping (点分治+树上多重背包+单调队列优化) 题面 马上就是小苗的生日了,为了给小苗准备礼物,小葱兴冲冲地来到了商店街.商店街有n个商店,并且它们之间的道路构成了一颗树 ...
- 【luogu P4007 清华集训2017】小Y和恐怖奴隶主
题目背景 “A fight? Count me in!” 要打架了,算我一个. “Everyone, get in here!” 所有人,都过来! 题目描述 小 Y 是一个喜欢玩游戏的 OIer.一天 ...
随机推荐
- js数据放入缓存,需要再调用
再贴代码之前先描述下,这个技术应用的场景:一个页面的http请求次数能少点就少,这样大大提高用户体验.所以再一个页面发起一个请求,把所有数据都拿到后储存在缓存里面,你想用的时候再调用出来,这个是非常好 ...
- h5-canvas(其他api)
###1.使用图片(需要image对象) drawImage(image,x,y,width,height) 其中image是image或者canvas对象,x和y 是其在目标canvas的起始坐标 ...
- [转帖]xargs命令详解,xargs与管道的区别
xargs命令详解,xargs与管道的区别 https://www.cnblogs.com/wangqiguo/p/6464234.html 之前一直说要学习一下 xargs 到现在为止也没学习.. ...
- 调整分区大小 转载--------------http://blog.csdn.net/perfectzq/article/details/73606119
centos7重新调整分区大小 centos 7 调整 root 和 home 的容量大小 查看磁盘的空间大小: df -h 备份/home : cp -r /home/ homebak/ 卸载 ...
- Junit概述
Junit -> java unit.也就是说Junit是xunit家族中的一员. unit <- unit test case,即单元测试用例. Junit = java uni ...
- Your branch is ahead of 'origin/master' by 2 commits.
遇到这种问题,表示在你之前已经有2个commit而没有push到远程分支上,所以需要先git push origin **将本地分支提到远程仓库.也可以直接git reset --hard HEAD~ ...
- laravel 守护进程Supervisor的配置
安装Supervisor Supervisor是Linux系统中常用的进程守护程序.如果队列进程queue:work意外关闭,它会自动重启启动队列进程.在Ubuntu安装Supervisor 非常简单 ...
- 重写TreeView模板来实现数据分层展示(一)
总想花些时间来好好总结一下TreeView这个WPF控件,今天来通过下面的这几个例子来好好总结一下这个控件,首先来看看一个常规的带虚线的TreeView控件吧,在介绍具体如何完成之前首先来看看最终实现 ...
- maven 中的pom中的 dependencyManagement 和 dependencies
参考:maven pom.xml 中 dependencyManagement和dependencies详解 现在的项目基本上都是使用多module来管理的,这就涉及到一个问题,多module之间如何 ...
- Chrome 75 & lazy-loading
Chrome 75 & lazy-loading https://addyosmani.com/blog/lazy-loading/ https://chromestatus.com/feat ...