Titanic 数据集是从 kaggle下载的,下载地址:https://www.kaggle.com/c/titanic/data

数据一共又3个文件,分别是:train.csv,test.csv,gender_submission.csv

先把需要视同的库导入:

import os
import datetime
import operator
import numpy as np
import pandas as pd
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import Imputer, scale
import matplotlib.pyplot as plt
 np.random.seed(19260817) # 设置一下种子,看一下博客园有没有能看懂的

不管是做机器学习,还是深度学习,还是其他的先确定是 分类问题还是回归问题,当然这两个可以互相转换的,然后拿到数据第一步肯定是先观察数据,数据是否又缺失,乱码等。

这个看一下就知道是否存活,存活是1,否则 0 ,那么就是分类

1,观察下数据

先观察一下数据,使用pandas读取数据:

DataFrame.head(n=5):head 方法默认取5行数据,你可以自己随便传参数,我只去10行观察下看下

    pd_train = pd.read_csv('./data/titanic/train.csv')
pd_test = pd.read_csv('./data/titanic/test.csv')
pd_gender = pd.read_csv('./data/titanic/gender_submission.csv')
print(pd_train.shape, pd_test.shape)
print(pd_train.head(10))

根据观察可以看到,数据有数值类型,也有字符类型,数值类型我们称作连续变量,字符类型我们称作分类变量,连续变量是不用转换的,而分类变量是需要转成连续变量的,否则,无法运算。
还可以看到有些数据是缺失的,这部分缺失值我们也需要处理,填充或者删除

2,特征工程

  根据第一步观察到的结果,我们对数据做处理。

  1)将性别 Sex 列,做数值转换处理,代码如下:

    # 性别 将性别字段Sex中的值 female用0,male用1代替,类型 int
pd_train['Sex'] = pd_train['Sex'].map({'female': 0, 'male': 1}).astype(int)
pd_test['Sex'] = pd_test['Sex'].map({'female': 0, 'male': 1}).astype(int)

  2) 将分类变量转换位连续变量。我们使用 sklearn 库下面的 LabelEncoder() 来处理

    # 将类型变量转换位连续变量
for f in pd_train.columns:
if pd_train[f].dtype == 'object':
label = LabelEncoder()
label.fit(list(pd_train[f].values))
pd_train[f] = label.transform(list(pd_train[f].values)) for f in pd_test.columns:
if pd_test[f].dtype == 'object':
label = LabelEncoder()
label.fit(list(pd_test[f].values))
pd_test[f] = label.transform(list(pd_test[f].values))

  3)统计缺失的列那些,观察缺失值有多少,再决定是删除,还是填充,如果某列值的缺失严重,那就没必要填充了,直接删除。

       我们采用填充的方式,使用 Imputer类来处理缺失值,这个类提供了估算缺失值的基本策略,使用缺失值所在的行/列中的平均值、中位数或者众数来填充。这个类也支持不同的缺失值编码。

   # 统计缺失的列
na_train = pd_train.isnull().sum().sort_values(ascending=False)
print(na_train) # 使用均值填充缺失值
train_data= pd_train.values
imput = Imputer(missing_values="NaN", strategy="mean", axis=0)
imput = imput.fit(train_data)
train_data = imput.fit_transform(train_data) # 使用均值填充缺失值
test_data= pd_test.values
imput = Imputer(missing_values="NaN", strategy="mean", axis=0)
imput = imput.fit(test_data)
test_data = imput.fit_transform(test_data)

  

3,训练

  经过对特征的处理,我们可以训练模型可,我使用了三个模型分别是,LogisticRegression,RandomForest,XGBClassifier

  监督学习的模型都一样,必须拟合(fit)两个矩阵(数组), 训练样本的矩阵 X,大小为 [n_samples, n_features],和 训练样本目标值(标签)的数组 Y,大小为 [n_samples]:

  1)LogisticRegression :逻辑回归,虽然名字叫回归,但是个分类模型

def train_logreistic():
"""
逻辑回归
"""
X_train, X_test, y_train, y_test = load_data() model = LogisticRegression(penalty='l2')
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
rfc_rate, rmse = calc_accuracy(y_pred, y_test)
total = total_survival(y_pred) print("LogisticRegression acc_rate:{0:.4f},RMS:{1:.4f},存活:{2}".format( rfc_rate, rmse, total))
return rfc_rate, rmse, total

  2)RandomForest:随机森林,基于树的模型,通过在分类器构造过程中引入随机性来创建一组不同的分类器。

def train_randomForster():

    X_train, X_test, y_train, y_test = load_data()
model = RandomForestClassifier(n_estimators=300,max_depth=12,random_state=7)
model.fit(X_train,y_train)
y_pred = model.predict(X_test)
rfc_rate, rmse = calc_accuracy(y_pred, y_test)
total = total_survival(y_pred)
print("RandomForestClassifier acc_rate:{0:.4f},RMS:{1:.4f},存活:{2}".format(rfc_rate, rmse, total))
return rfc_rate, rmse, total

  3)XGBClassifier :大规模并行boosted tree的工具,它是目前最快最好的开源boosted tree工具包,比常见的工具包快10倍以上,kaggle 比赛的神器

def train_XGBoost():

    X_train, X_test, y_train, y_test = load_data()
model = xgb.XGBClassifier(max_delta_step=6, learning_rate=0.1, n_estimators=100, objective="binary:logistic",silent=True)
eval_data = [(X_test, y_test)]
model.fit(X_train, y_train, eval_set=eval_data, early_stopping_rounds=30)
y_pred = model.predict(X_test)
rfc_rate, rmse = calc_accuracy(y_pred, y_test)
total = total_survival(y_pred) print("XGBClassifier acc_rate:{0:.4f},RMS:{1:.4f},存活:{2}".format(rfc_rate, rmse, total))
return rfc_rate, rmse, total

4,预测

  model.predict(X_test) 都在里面写了,我就不说了。

  三个模型最后的结果:

  

def train():

    lg_rate, lg_rmse, lg_total = train_logreistic()
rf_rate, rf_rmse, rf_total = train_randomForster()
xg_rate, xg_rmse, xg_total = train_XGBoost() print("LogisticRegression acc_rate:{0:.4f},RMS:{1:.4f},存活:{2}".format( lg_rate, lg_rmse, lg_total))
print("RandomForestClassifier acc_rate:{0:.4f},RMS:{1:.4f},存活:{2}".format(rf_rate, rf_rmse, rf_total))
print("XGBClassifier acc_rate:{0:.4f},RMS:{1:.4f},存活:{2}".format(xg_rate, xg_rmse, xg_total))
XGBClassifier acc_rate:80.4469,RMS:0.4422,存活:56
LogisticRegression acc_rate:74.8603,RMS:0.5014,存活:60
RandomForestClassifier acc_rate:82.6816,RMS:0.4162,存活:54
XGBClassifier acc_rate:80.4469,RMS:0.4422,存活:56

好了,至于怎么调参,网格搜索我就不写了,简单的分析就完成了。。

参考:

1) http://xgboost.readthedocs.io/en/latest/

2) http://scikit-learn.org/stable/

3) https://www.kaggle.com/

源码地址:https://github.com/jarvisqi/machine_learning/blob/master/ml_xgboost/titanic.py

【机器学习】SKlearn + XGBoost 预测 Titanic 乘客幸存的更多相关文章

  1. 【机器学习学习】SKlearn + XGBoost 预测 Titanic 乘客幸存

    Titanic 数据集是从 kaggle下载的,下载地址:https://www.kaggle.com/c/titanic/data 数据一共又3个文件,分别是:train.csv,test.csv, ...

  2. python机器学习-sklearn挖掘乳腺癌细胞(三)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  3. python机器学习-sklearn挖掘乳腺癌细胞(一)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  4. python机器学习-sklearn挖掘乳腺癌细胞(五)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  5. python机器学习-sklearn挖掘乳腺癌细胞(四)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  6. python机器学习-sklearn挖掘乳腺癌细胞(二)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  7. 机器学习之路: python 决策树分类DecisionTreeClassifier 预测泰坦尼克号乘客是否幸存

    使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https: ...

  8. 基于titanic数据集预测titanic号旅客生还率

    数据清洗及可视化 实验内容 数据清洗是数据分析中非常重要的一部分,也最繁琐,做好这一步需要大量的经验和耐心.这门课程中,我将和大家一起,一步步完成这项工作.大家可以从这门课程中学习数据清洗的基本思路以 ...

  9. chapter02 三种决策树模型:单一决策树、随机森林、GBDT(梯度提升决策树) 预测泰坦尼克号乘客生还情况

    单一标准的决策树:会根每维特征对预测结果的影响程度进行排序,进而决定不同特征从上至下构建分类节点的顺序.Random Forest Classifier:使用相同的训练样本同时搭建多个独立的分类模型, ...

随机推荐

  1. chrome离线包出现的小问题

    网友使用离线包时出现的一些小问题,在此做个记录: 1. @200258 这个版本就是个坑.chrome低版本显示空白,高版本界面乱掉,有反馈出54可以,有说56可以 亲测:即使不用离线包直接FQ,也会 ...

  2. Thrift的C++服务端(线程池和非阻塞)模式

    非阻塞模式 #include "RpcServiceHandler.h" #include <thrift/concurrency/ThreadManager.h> # ...

  3. Linux中DNS的设置

    1.查看本机的域名 hostname 2.修改DNS 临时修改: hostname desktop0.example.com 永久修改: hostnamectl set-hostname deskto ...

  4. redis sentinel集群的搭建

    背景说明: 这里采用1主2从的redis集群,3个sentinel搭建高可用redis集群. 一,关于搭建redis-sentinel高可用之前,我们必须要了解redis主从搭建redis-senti ...

  5. Add correct host key in /root/.ssh/known_hosts to get rid of this message

    bug: Add correct host key in /root/.ssh/known_hosts to get rid of this message 解决办法: rm ~/.ssh/known ...

  6. java笔记--对信号量Semaphore的理解与运用

    java Semaphore 信号量的使用: 在java中,提供了信号量Semaphore的支持. Semaphore类是一个计数信号量,必须由获取它的线程释放, 通常用于限制可以访问某些资源(物理或 ...

  7. 如何解决远程连接mysql出现Can’t connect to MySQL server on (111 “Connection refused”)的问题

    如何解决远程连接mysql出现Can’t connect to MySQL server on (111 “Connection refused”)的问题 开放Mysql的远程连接 在服务器上登录my ...

  8. c/c++ 模板与STL小例子系列<三> traits

    c/c++ 模板与STL小例子系列 traits 对这个概念,还是处于懵逼的状态,初步体会就是,为了解决类型之间的转换问题. 从一个类型为A的指针,转化到类型为B的指针,中间需要用void*来作为中介 ...

  9. main主函数

    public static void main(String[] args) { //虚拟机调用main函数,需要传个args的参数,传入的是new String[0] System.out.prin ...

  10. Angular路由与多视图综合案例

    Ajax请求存在的几个问题 (1)Ajax请求不会留下History 记录,会导致浏览器后退按钮失效 (2)用户无法直接通过URL进入应用中的指定页面(保存书签.链接分享给朋友) (3)Ajax对SE ...