洛谷P4561 [JXOI2018]排序问题(二分 期望)
题意
Sol
首先一种方案的期望等于它一次排好的概率的倒数。
一次排好的概率是个数数题,他等于一次排好的方案除以总方案,也就是\(\frac{\prod cnt_{a_i}!}{(n+m)!}\)。因为最终的序列是一定的,两个序列不同当且仅当权值相同的数排列方式不同。
他的期望为\(\frac{(n+m)!}{\prod cnt_i!}\),我们希望这玩意儿尽量大,也就是下面的尽量小
显然对于每个\(cnt\)来说,最大值越小越好,可以直接二分,然后check一下是否可行。
具体的贪心策略是每次先填出现次数最少的。
复杂度\(O(nlogn)\)
#include<bits/stdc++.h>
#define Fin(x) freopen(#x".in", "r", stdin);
#define int long long
using namespace std;
const int MAXN = 2e7 + 10, mod = 998244353;
template<typename A, typename B> inline bool chmax(A &x, B y) {return x < y ? x = y, 1 : 0;}
template<typename A, typename B> inline bool chmin(A &x, B y) {return x > y ? x = y, 1 : 0;}
template<typename A, typename B> inline A mul(A x, B y) {return 1ll * x * y % mod;}
template<typename A, typename B> inline void add2(A &x, B y) {x = x + y >= mod ? x + y - mod : x + y;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, fac[MAXN], L, R, a[MAXN], date[MAXN], num, cnt[MAXN], pl, pr, l, r;
int fp(int a, int p) {
int base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
int inv(int x) {
return fp(x, mod - 2);
}
int check(int lim) {
int tot = 0;
tot = lim * (R - L - (pr - pl));
if(tot > M) return tot;
for(int i = pl; i <= pr && tot <= M; i++)
tot += max(lim - cnt[i], 0ll);
return tot;
}
void solve() {
N = read(); M = read(); L = read(); R = read();
num = 0;
for(int i = 1; i <= N; i++) a[i] = read(), date[++num] = a[i], cnt[i] = 0;
sort(a + 1, a + N + 1);
sort(date + 1, date + num + 1);
num = unique(date + 1, date + num + 1) - date - 1;
for(int i = 1; i <= N; i++) a[i] = lower_bound(date + 1, date + num + 1, a[i]) - date, cnt[a[i]]++;
pl = lower_bound(date + 1, date + num + 1, L) - date;
pr = upper_bound(date + 1, date + num + 1, R) - date - 1;
l = 0, r = N + M;
while(l < r) {
int mid = l + r >> 1;
if(check(mid) <= M) l = mid + 1;
else r = mid;
}
int ans = fp(fac[l - 1], R - L - (pr - pl));
for(int i = 1; i <= num; i++)
if(i >= pl && i <= pr) ans = mul(ans, fac[max(cnt[i], l - 1)]);
else ans = mul(ans, fac[cnt[i]]);
ans = mul(ans, fp(l, M - check(l - 1)));//把少了的补上
cout << mul(fac[N + M], inv(ans)) << '\n';
}
signed main() {
fac[0] = 1;
for(int i = 1; i <= (int) 2e7; i++) fac[i] = mul(i, fac[i - 1]);
for(int T = read(); T--; solve());
return 0;
}
/*
2
3 3 5 7
1 3 4
3 3 1 2
1 3 4
*/
洛谷P4561 [JXOI2018]排序问题(二分 期望)的更多相关文章
- 洛谷 P2680 运输计划-二分+树上差分(边权覆盖)
P2680 运输计划 题目背景 公元 20442044 年,人类进入了宇宙纪元. 题目描述 公元20442044 年,人类进入了宇宙纪元. L 国有 nn 个星球,还有 n-1n−1 条双向航道,每条 ...
- 洛谷P4983 忘情 (WQS二分+斜率优化)
题目链接 忘情水二分模板题,最优解对划分段数的导数满足单调性(原函数凸性)即可使用此方法. 详细题解洛谷里面就有,不啰嗦了. 二分的临界点让人有点头大... #include<bits/stdc ...
- 并不对劲的bzoj5322:loj2543:p4561:[JXOI2018]排序问题
题目大意 \(T\)(\(T\leq10^5\))组询问 每次给出\(n,m,l,r\),和\(n\)个数\(a_1,a_2,...,a_n\),要找出\(m\)个可重复的在区间\([l,r]\)的数 ...
- 洛谷 P1163"银行贷款"(二分)
传送门 题解: 二分月利率,假设当前判断的月利率为x: 那么如何判断x是大了还是小了呢? 下面来分析一下Check()函数: bool Check(double x) { double tot=a; ...
- 洛谷P1850 换教室 [noip2016] 期望dp
正解:期望dp 解题报告: 哇我发现我期望这块真的布星,可能在刷了点儿NOIp之后会去搞一波期望dp的题...感觉连基础都没有打扎实?基础概念都布星! 好那先把这题理顺了嗷qwq 首先我们看到期望就会 ...
- 【洛谷P1462】【二分+堆优化dij】
题目描述 在艾泽拉斯,有n个城市.编号为1,2,3,...,n. 城市之间有m条双向的公路,连接着两个城市,从某个城市到另一个城市,会遭到联盟的攻击,进而损失一定的血量. 每次经过一个城市,都会被收取 ...
- 2018.09.26洛谷P3957 跳房子(二分+单调队列优化dp)
传送门 表示去年考普及组的时候失了智,现在看来并不是很难啊. 直接二分答案然后单调队列优化dp检验就行了. 注意入队和出队的条件. 代码: #include<bits/stdc++.h> ...
- 【洛谷p3994】Highway 二分+斜率优化DP
题目大意:给你一颗$n$个点的有根树,相邻两个点之间有距离,我们可以从$x$乘车到$x$的祖先,费用为$dis\times P[x]+Q[x]$,问你除根以外每个点到根的最小花费. 数据范围:$n≤1 ...
- 洛谷P3939 数颜色 二分查找
正解:二分 解题报告: 传送门! 话说其实我开始看到这题想到的是分块,,, 但是显然不用这么复杂,,,因为仔细看下这题,会发现每次只改变相邻的兔子的位置 所以开个vector(或者开个数组也成QwQ( ...
随机推荐
- springboot tomcat配置参数列表
springboot tomcat的配置选项大全 server. Port = xxxx server. Address = server. contextPath = server. display ...
- MySQL分布式事物(XA事物)的使用
有时一个系统的数据 放在不同的库之中.如果用普通的事物 一个分支库提交成功了,另外一个分支库提交失败了, 这候 两个库没有同步的成功或者失败.会导致系统数据的不完整. 对于处理这种情况 MySQL有了 ...
- Kali学习笔记12:服务扫描
关于什么是服务扫描不多介绍,通俗来看: 我已经扫描到目标机器某个端口开放,接下来我需要知道开放这个端口的是什么应用 情景: 我的Kali机器IP地址:192.168.22.130 我要扫描的Metas ...
- Redis学习笔记之位图
目录 位图定义 应用场景 基本使用 查找统计 位图定义 位图并不是一种数据结构,其实就是一种普通的字符串,也可以说是byte数组.基本语法是setbit/getbit,刚才说了是一个byte数组,所以 ...
- 页面怎么引用外部css+js代码
外部css样式:把css样式写到一个文件内,方便使用,减少冗余. 如果使用的是外部css样式,页面怎么引用: 使用 <link rel="stylesheet" type=& ...
- RISC-V指令集介绍 - 整数基本指令集
1. 寄存器 32个x寄存器,RV32下x reg是32位宽 x0:硬连线 常数0 专门的零寄存器 x1-x31:31个通用reg 返回地址:没有强制要求那一个x作为lr,但是一般用x1 pc:额外的 ...
- Python - References
01 - Python文档 Python:https://www.python.org/ Documentation:https://docs.python.org/ Standard Library ...
- 协议—IIC
I2C总线支持任何IC生产过程NMOS CMOS双极性,两线――串行数据 SDA 和串行时钟SCL线在连接到总线的器件间传递信息,每个器件都有一个唯一的地址识别,无论是微控制器.LCD 驱动器.存储器 ...
- Java IO API记录
文件路径: public static final String FILEPATH= File.separator+"Users"+ File.separator+"xu ...
- 服务注册中心之ZooKeeper系列(三) 实现分布式锁
通过ZooKeeper的有序节点.节点路径不回重复.还有节点删除会触发Wathcer事件的这些特性,我们可以实现分布式锁. 一.思路 zookeeper中创建一个根节点Locks,用于后续各个客户端的 ...