【BZOJ5318】[JSOI2018]扫地机器人(动态规划)

题面

BZOJ

洛谷

题解

神仙题。不会。。。。

先考虑如果一个点走向了其下方的点,那么其右侧的点因为要被访问到,所以必定只能从其右上方的点走过来。同理,如果这个点向右,那么其下方的点就只能从其左下方的点向右走过来。

因此我们可以确定所有平行于副对角线的斜线上的位置的方向都是相同的。

考虑\(n=m\)的情况,从一个点开始无论向右开始向下,都只会走到下一条对角线上,因此这个过程本质上就是就是固定了一个向下向右的序列,然后循环这个操作直到结束。

考虑一个序列如果是合法的,假设其向下走\(x\)次,向右走\(n-x\)次,因为是循环这个操作,那么它会走到的列显然就是\(gcd(x,n)\)的倍数,因此当且仅当\(gcd(x,n)=1\)时这个操作序列才会合法。

因此\(n=m\)时答案就是\(\displaystyle \sum_{i=1}^n [gcd(i,n)=1]{n\choose i}\)。

如果\(n\neq m\),令\(d=gcd(n,m)\),(通过看别人写的题解),我们可以知道这个矩形必定被分成若干个\(d*d\)的矩形,并且每个矩形内部的方案都是一样的。(谁会证明就教教我啊QwQ)

那么假设\(i\)是向下走的步数,\(j=d-i\)即向右走的步数。

那么答案就是\(\displaystyle \sum_{i=1}^d[gcd(i,d)=1][gcd(i,n)=1][gcd(j,m)=1]{d\choose i}\)。(\(i,d\)互质和\(j,d\)互质两者是等价的,所以就不用多一个\(j,d\)互质的限制了)

现在考虑有障碍的情况。如果从一个格子\((x,y)\)出发走\(d\)步,那么它必定会到达\((x+i,y+j)\)(因为所有\(d*d\)的矩形都是同构的)。

把题目要求的停止,转为求到达所有障碍的时间的最小值。

把所有障碍分下类,全部可以写成\((x+ki,y+kj)\)的形式,这里的\(1\le x\le i+1,1\le y\le j+1\)。

而最小值只有\(n*m\)个,设\(f[i][j][k]\)表示当前在点\((i,j)\),路径上访问过的障碍的最小值为\(k\)的方案数。

每次枚举合法的一组\(i,j\),然后预处理出离每个\((x+ki,y+kj)\)最近的障碍的距离,这样子就可以大力\(dp\)了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MOD 998244353
#define MAX 55
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,d,ans,val[MAX][MAX];
int f[MAX][MAX][MAX*MAX];
char g[MAX][MAX];
int Solve(int dx,int dy)
{
memset(f,0,sizeof(f));
f[1][1][val[1][1]]=1;
for(int i=1;i<=dx;++i)
for(int j=1;j<=dy;++j)
for(int k=1;k<=n*m;++k)
{
if(!f[i][j][k])continue;
if(i<dx)add(f[i+1][j][min(k,val[i+1][j])],f[i][j][k]);
if(j<dy)add(f[i][j+1][min(k,val[i][j+1])],f[i][j][k]);
}
int ret=0;
for(int i=1;i<=n*m;++i)ret=(ret+1ll*f[dx][dy][i]*i)%MOD;
return ret;
}
int main()
{
int T=read();
while(T--)
{
n=read(),m=read();d=__gcd(n,m);ans=0;
for(int i=1;i<=n;++i)scanf("%s",g[i]+1);
for(int i=1,j=d-1;i<=d;++i,--j)
{
if(__gcd(i,d)!=1||__gcd(i,n)!=1||__gcd(j,m)!=1)continue;
for(int x=1;x<=i+1;++x)
for(int y=1;y<=j+1;++y)
{
int nx=x,ny=y,dis=x+y-2;val[x][y]=n*m;
do
{
if(g[nx][ny]=='1'){val[x][y]=dis;break;}
nx+=i;ny+=j;dis+=d;
if(nx>n)nx-=n;if(ny>m)ny-=m;
}while(nx!=x||ny!=y);
}
ans=(ans+Solve(i+1,j+1))%MOD;
}
printf("%d\n",ans);
}
return 0;
}

【BZOJ5318】[JSOI2018]扫地机器人(动态规划)的更多相关文章

  1. LGP4588[JSOI2018]扫地机器人

    题解 需要先说明一点东西: 1 同一副对角线方向相同,共有$gcd(n,m)$条不同的副对角线,机器人的行为是一个$gcd(n,m)$的循环:: 如果左上方是$(1,1)$,容易看出所有的路径是从左或 ...

  2. [LeetCode] Robot Room Cleaner 扫地机器人

    Given a robot cleaner in a room modeled as a grid. Each cell in the grid can be empty or blocked. Th ...

  3. Hihocoder 1275 扫地机器人 计算几何

    题意: 有一个房间的形状是多边形,而且每条边都平行于坐标轴,按顺时针给出多边形的顶点坐标 还有一个正方形的扫地机器人,机器人只可以上下左右移动,不可以旋转 问机器人移动的区域能不能覆盖整个房间 分析: ...

  4. Java实现第十届蓝桥杯JavaC组第十题(试题J)扫地机器人

    扫地机器人 时间限制: 1.0s 内存限制: 512.0MB 本题总分:25 分 [问题描述] 小明公司的办公区有一条长长的走廊,由 N 个方格区域组成,如下图所 示. 走廊内部署了 K 台扫地机器人 ...

  5. [LeetCode] 489. Robot Room Cleaner 扫地机器人

    Given a robot cleaner in a room modeled as a grid. Each cell in the grid can be empty or blocked. Th ...

  6. 九度OJ 1408 吃豆机器人 -- 动态规划

    题目地址:http://ac.jobdu.com/problem.php?pid=1408 题目描述: 淘宝公司内部有许多新鲜的小玩具,例如淘宝智能机器人.小时候,大家都玩过那个吃豆子的游戏吧,这机器 ...

  7. LOJ 2550 「JSOI2018」机器人——找规律+DP

    题目:https://loj.ac/problem/2550 只会写20分的搜索…… #include<cstdio> #include<cstring> #include&l ...

  8. 489. Robot Room Cleaner扫地机器人

    [抄题]: Given a robot cleaner in a room modeled as a grid. Each cell in the grid can be empty or block ...

  9. 【LOJ】#2550. 「JSOI2018」机器人

    题解 我不会打表找规律啊QAQ 规律就是 对于\(n = m\)我们每一条左下到右上的对角线上的点的走法都是一样的且每n步一个轮重复 对于\(n != m\)我们找到最大公约数\(d\),在每个\(d ...

随机推荐

  1. Vue2 实现树形菜单(多级菜单)功能模块

    结构示意图 ├── index.html ├── main.js ├── router │ └── index.js # 路由配置文件 ├── components # 组件目录 │ ├── App. ...

  2. PS调出水彩画效果古装人物照片

    首先在PS里操作: 1.磨皮液化 磨皮液化就不细说啦~常规操作. 2.背景调色 分析:想塑造油画般的感觉,背景颜色想要蓝绿色 1.用可选颜色工具里面的中性色改变整体颜色,把皮肤和头发颜色用蒙版擦出来: ...

  3. Notepad++快捷使用

    用Notepad++写代码,要是有一些重复的代码想copy一下有木有简单的方法呢,确实还是有的不过也不算太好用.主要是应用键盘上的 Home 键 和 End 键.鼠标光标停留在一行的某处,按 Home ...

  4. Linux 下面RPM 安装的SQLSERVER 修改字符集的方法

    1. 自己还是太low 2. 遇到问题 先 -h 处理 3. 发现登录报错, 怀疑是字符集的问题: 4. 计划是修改字符集 到 自己的环境可用的状态 使用命令 /opt/mssql/bin/mssql ...

  5. 极验3.0滑动拼图验证的使用--java

    [ 前言: 在登录其他网站的时候,看到有个滑动拼图的验证觉得挺好玩的,以前做一个图片验证的小demo,现在发现很多网站都开始流行滑动拼图的验证了,今天也想自己动手来弄一个. 废话不多说,开始撸起来! ...

  6. linux重装系统,如何保存硬盘中的内容

    以前没有太关注重装系统如何保留下硬盘中的内容.但是最近有一些文件在重装系统后确实需要继续保留下来,于是花了点时间了解下磁盘分区相关的东东. 参考 http://blog.csdn.net/openn/ ...

  7. qtp自动化测试-条件语句 if select case

    1 if 语句 if  condition  then end if If condition Then   [statements] [ElseIf condition-n Then   [else ...

  8. C# Web开发中弹出对话框的函数[转载]

    public void Alert(string str_Message) { ClientScriptManager scriptManager =((Page)System.Web.HttpCon ...

  9. 进程创建fork()

    简单进程创建例子: #include <stdio.h> #include <sys/types.h> #include <sys/wait.h> #include ...

  10. Idea中JavaWeb项目部署

    1. 添加应用服务器tomcat 2. 将tomcat配置添加到项目中 artifacts配置:添加deploy, 添加artifacts,选择Web Application: Exploded &g ...