Description

给你$n$,$m$,求 $\sum^n_{i=1} \sum^m_{j=1} \ lcm(x,y)$

答案对$100000009$取模。

多组数据。

Input

第一行有一个正整数$t$表示数据组数

接下来$t$行每行有两个正整数$n$,$m$

Output

$t$行,第$i$行为第$i$组询问的答案。

HINT

对于$100\%$的数据:$t\leq 10000,n,m\leq {10}^7$

$100000009$不是一个质数。

题解:

第一次打莫演,手推公式。(我为什么会做这道题)

\begin{aligned}
ans&=\sum^n_{i=1}\sum^m_{j=1}\frac{ij}{gcd(i,j)}\\
&=\sum^n_d\sum^n_{i=1}\sum^m_{j=1}\frac{ij}{d}[gcd(i,j)=d]\\
&=\sum^n_d\sum^{\lfloor\frac{n}{d}\rfloor}_{i=1}\sum^{\lfloor\frac{m}{d}\rfloor}_{j=1}\frac{d^2ij}{d}[gcd(i,j)=1]\\
&=\sum^n_d\sum^{\lfloor\frac{n}{d}\rfloor}_{i=1}\sum^{\lfloor\frac{m}{d}\rfloor}_{j=1}dij\sum_{k\mid gcd(i,j)}\mu(k)&(\sum_{d\mid n}\mu(d)=[n=1])\\
&=\sum^n_k\mu(k)\sum^n_d\sum^{\lfloor\frac{n}{d}\rfloor}_{i=1}[k\mid i]\sum^{\lfloor\frac{m}{d}\rfloor}_{j=1}[k\mid j]dij\\
&=\sum^n_k\mu(k)\sum^n_d\sum^{\lfloor\frac{n}{kd}\rfloor}_{i=1}\sum^{\lfloor\frac{m}{kd}\rfloor}_{j=1}dk^2ij\\
&=\sum^n_k\mu(k)\sum^n_d\sum^{\lfloor\frac{n}{kd}\rfloor}_{i=1}i\sum^{\lfloor\frac{m}{kd}\rfloor}_{j=1}j\cdot dk^2\\
&设 T=kd\\
ans&=\sum^n_{T=1}\sum^{\lfloor\frac{n}{T}\rfloor}_{i=1}i\sum^{\lfloor\frac{m}{T}\rfloor}_{j=1}j\sum_{d\mid T}\mu(\frac{T}{d})\frac{T^2}{d}
\end{aligned}

第一个部分 $ \sum^{\lfloor\frac{n}{T}\rfloor}_{i=1}i\sum^{\lfloor\frac{m}{T}\rfloor}_{j=1}j $ 用等差数列求和 $O(1)$ 求出

第二个部分 $ \sum_{d\mid T}\mu(\frac{T}{d})\frac{T^2}{d} $ 线性筛 $O(n)$ 预处理处

设$ g(x)=\sum_{d\mid T}\mu(\frac{T}{d})\frac{T^2}{d} $,考虑怎么求$g(x)$

如果说x为质数,那么根据公式$g(x)=x-x^2$

如果$x$不为质数,我们设$x=i\times p$,其中$p$为质数,那么有两种情况

$p\nmid i$,由于$i$和$p$互质而$g(x)$为积性函数,$g(x)=g(i\times p)=g(i)\times g(p)$

$p\mid i$,这个时候就有点不是很好搞了……

我们可以把i表示为$t\times p^k$($t$与$p$互质)

那么我们就尝试一下从乘了一个$p$会有什么影响这个方面来考虑一下

考虑$g(p^k)$的值,显然根据$\mu$的定义,只有$\mu(1)$和$\mu(p)$能够提供贡献(其他的$p$的指数都$>1$,所以都是$0$)

那么我们就可以得到$g(p^k)=f(1)p^k+f(p)p^{k-1}$

然后写出$g(p^{k+1})$的表达式,会发现是$f(1)p^{k+1}+f(p)p^k$

也就是说$g(p^{k+1})=g(p^k)p$

那么就可以得到$g(x)=g(i^p)=g(t\times p^k\times p)=g(t)\times g(p^k)\times p=g(x)\times p$

然后就可以顺利筛出来啦

最外层循环用数论分块,总时间 $O(\sqrt{n})$

CODE:

 #include<iostream>
#include<cstdio>
using namespace std; #define mod 100000009LL
#define N 10000005
int t,n,m,cnt,ans;
long long pri[N],g[N],sum[N];
bool vis[N]; void init(){
sum[]=g[]=;
for(int i=;i<N;i++){
sum[i]=1LL*i*(i+)/%mod;
if(!vis[i]){
g[i]=(i-1LL*i*i%mod+mod)%mod;
pri[++cnt]=i;
}
for(int j=;j<=cnt&&i*pri[j]<N;j++){
vis[i*pri[j]]=true;
if(i%pri[j])
g[i*pri[j]]=g[i]*g[pri[j]]%mod;
else
g[i*pri[j]]=g[i]*pri[j]%mod;
}
}
for(int i=;i<N;i++)(g[i]+=g[i-])%=mod;
} int main(){
scanf("%d",&t);
init();
while(t--){
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
ans=;
for(int i=,pos=;i<=n;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans+=sum[n/i]*sum[m/i]%mod*(g[pos]-g[i-]+mod)%mod;
ans%=mod;
}
printf("%d\n",ans);
}
}

【BZOJ2693】jzptab (莫比乌斯反演)的更多相关文章

  1. BZOJ2693: jzptab(莫比乌斯反演)

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2068  Solved: 834[Submit][Status][Discuss] Descripti ...

  2. bzoj2693 jzptab 莫比乌斯反演|题解

    Description   Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample Input 1 4 5 ...

  3. 【BZOJ2693】jzptab [莫比乌斯反演]

    jzptab Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description   求 Input 第一行一个 ...

  4. 【bzoj2693】jzptab 莫比乌斯反演+线性筛

    题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...

  5. [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)

    题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...

  6. 【BZOJ】2693: jzptab 莫比乌斯反演

    [题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...

  7. BZOJ 2693: jzptab [莫比乌斯反演 线性筛]

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1194  Solved: 455[Submit][Status][Discu ...

  8. BZOJ 2693: jzptab( 莫比乌斯反演 )

    速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...

  9. luoguP1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题意 注:默认\(n\leqslant m\). 所求即为:\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 因为\(i*j=\gcd(i, ...

  10. [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演

    ---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...

随机推荐

  1. 如何远程连接Windows server上的MySQL服务

    废话不多说,直接开干 首先要打开服务器的MySQL端口号:3306(当然,也可以把服务器的防火墙直接关闭,不过不安全) 1.打开服务器管理器,有个高级安全Windows防火墙,下面有一个入站规则, 右 ...

  2. python报错UnicodeDecodeError:

    Python 里面的编码和解码也就是 unicode 和 str 这两种形式的相互转化.编码是 unicode -> str,相反的,解码就 是 str -> unicode.剩下的问题就 ...

  3. IDEA 官方背景与修改jsp模板以及字体大小

    一.官方背景切换 方法一:先打开file找到Settings  如图: 也可以用快捷方式打开:Ctrl+alt+s  打开 找到Editor点击进入 ,再然后找Color Scheme 可以看到如下图 ...

  4. OC和C++的混用1

    //Objective-C类 /*在混用之前需要做一步非常重要的事:不是代码而是编译器选项,在做混合编译之前一定要把编译器的Compile Sources As选项改为Objective C++. 修 ...

  5. iOS8之后,UITableViewRowAction实现滑动多个按钮

    #pragma mark - View lifeCycle - (void)viewDidLoad { [super viewDidLoad]; self.view.backgroundColor = ...

  6. Where art thou-freecodecamp算法题目

    Where art thou 1.要求 写一个 function,它遍历一个对象数组(第一个参数)并返回一个包含相匹配的属性-值对(第二个参数)的所有对象的数组. 如果返回的数组中包含 source ...

  7. MySQL数据库---索引

    索引的作用就是快速找出在一个列上用一特定值的行.如果没有索引,MySQL不得不首先以第一条记录开始并然后读完整个表直到它找出相关的行. 索引的类型: 先写一个建表语句: CREATE TABLE `t ...

  8. kali下安装中文输入法

    参考网址:https://blog.csdn.net/qq_37367124/article/details/79229739 更性源 vim /etc/apt/source.list 设置更新源 更 ...

  9. Jenkins忘记管理员密码处理

    1.先找到jenkins安装目录打开config.xml文件. 2.然后编辑,删除以下部分: <useSecurity>true</useSecurity> <autho ...

  10. (转)rvm安装与常用命令

    rvm是一个命令行工具,可以提供一个便捷的多版本ruby环境的管理和切换. https://rvm.io/ 如果你打算学习ruby/rails, rvm是必不可少的工具之一. 这里所有的命令都是再用户 ...