[题目大意]:

给定一棵树,树的每个节点对应一个小写字母字符,有m个询问,每次询问以vi为根节点的子树中,深度为hi的所有节点对应的字符能否组成一个回文串;

[题目分析]:

先画个图,可看出每次询问的所有节点都是一个从1开始bfs遍历完成的节点序列中的一段,已知深度hi的情况下,可以二分得到深度为hi的那一段的位置;

那么如何满足找到的节点必须在以vi为根的子树内这个条件?

可以想到dfs的时间戳,把1-n的数组按深度排序,深度相同的按照dfs时间戳排序;

这样就可以二分得到要求的所有节点的位置;

这样可以O(n)

分析回文串可知,如果奇数数量的字符不超过1个,那么一定能组成回文串;

用前缀和xor优化;

可以做到O(nlogn);

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<iomanip>
#include<map>
#include<set>
#include<vector>
#include<ctime>
#include<cmath>
using namespace std;
#define LL long long
#define up(i,j,n) for(int i=(j);(i)<=(n);(i)++)
#define max(x,y) ((x)<(y)?(y):(x))
#define min(x,y) ((x)<(y)?(x):(y))
#define FILE "1"
#define pii pair<int,int>
const int maxn=,inf=;
int read(){
int x=;bool flag=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')flag=;ch=getchar();}
while(ch<=''&&ch>=''){x=x*+ch-'';ch=getchar();}
return flag?-x:x;
}
struct node{
int y,next;
}e[maxn<<];
int n,m;
int linkk[maxn],len=,sum[maxn];
int dfs_clock=,fa[maxn];
char s[maxn];
int f[maxn];
struct Node{
int dep,pre,lat,id;
bool operator<(const Node &b)const{return dep<b.dep||(dep==b.dep&&pre<b.pre);}
}a[maxn];
void insert(int x,int y){
e[++len].y=y;
e[len].next=linkk[x];
linkk[x]=len;
}
void dfs(int x){
a[x].pre=++dfs_clock;a[x].id=x;
for(int i=linkk[x];i;i=e[i].next){
if(e[i].y==fa[x])continue;
a[e[i].y].dep=a[x].dep+;
dfs(e[i].y);
}
a[x].lat=++dfs_clock;
}
void init(){
n=read(),m=read();int x;
up(i,,n){
x=read();
insert(i,x);
insert(x,i);
fa[i]=x;
}
scanf("%s",s+);
a[].dep=;
dfs();
sort(a+,a+n+);
for(int i=;i<=n;i++)f[a[i].id]=i;
}
int find(int x,int Dep){
int left=,right=n,mid;
int L=,R=;
while(left<=right){
mid=(left+right)>>;
if(a[mid].dep<Dep)left=mid+;
else {
right=mid-;
if(a[mid].dep==Dep)L=mid;
}
}
left=,right=n,mid=;
while(left<=right){
mid=(left+right)>>;
if(a[mid].dep<=Dep){
left=mid+;
if(a[mid].dep==Dep)R=mid;
}
else right=mid-;
}
if(!L&&!R)return ;
left=L,right=R;
int u=,v=;
while(left<=right){
mid=(left+right)>>;
if(a[mid].pre>=a[f[x]].pre){
right=mid-;
if(a[mid].pre>=a[f[x]].pre&&a[mid].pre<=a[f[x]].lat)u=mid;
}
else left=mid+;
}
left=L,right=R;
while(left<=right){
mid=(left+right)>>;
if(a[mid].pre<=a[f[x]].lat){
left=mid+;
if(a[mid].pre>=a[f[x]].pre&&a[mid].pre<=a[f[x]].lat)v=mid;
}
else right=mid-;
}
if(!u||!v)return ;
int p=sum[v]^sum[u-];
int cnt=;
while(p){
if(p&)cnt++;
p>>=;
}
if(cnt>=)return ;
else return ;
}
void work(){
int x,y;
for(int i=;i<=n;i++)sum[i]=sum[i-]^(<<(s[a[i].id]-'a'));
while(m--){
x=read(),y=read();
if(find(x,y))printf("Yes\n");
else printf("No\n");
}
}
int main(){
init();
work();
return ;
}

codeforces 570D.Tree Requests的更多相关文章

  1. Codeforces 570D - Tree Requests(树上启发式合并)

    570D - Tree Requests 题意 给出一棵树,每个节点上有字母,查询 u k,问以 u 为根节点的子树下,深度为 k 的所有子节点上的字母经过任意排列是否能构成回文串. 分析 一个数组 ...

  2. Codeforces 570D TREE REQUESTS dfs序+树状数组 异或

    http://codeforces.com/problemset/problem/570/D Tree Requests time limit per test 2 seconds memory li ...

  3. Codeforces 570D TREE REQUESTS dfs序+树状数组

    链接 题解链接:点击打开链接 题意: 给定n个点的树.m个询问 以下n-1个数给出每一个点的父节点,1是root 每一个点有一个字母 以下n个小写字母给出每一个点的字母. 以下m行给出询问: 询问形如 ...

  4. Codeforces 570D - Tree Requests【树形转线性,前缀和】

    http://codeforces.com/contest/570/problem/D 给一棵有根树(50w个点)(指定根是1号节点),每个点上有一个小写字母,然后有最多50w个询问,每个询问给出x和 ...

  5. CodeForces 570D - Tree Requests - [DFS序+二分]

    题目链接:https://codeforces.com/problemset/problem/570/D 题解: 这种题,基本上容易想到DFS序. 然后,我们如果再把所有节点分层存下来,那么显然可以根 ...

  6. CF 570D. Tree Requests [dsu on tree]

    传送门 题意: 一棵树,询问某棵子树指定深度的点能否构成回文 当然不用dsu on tree也可以做 dsu on tree的话,维护当前每一个深度每种字母出现次数和字母数,我直接用了二进制.... ...

  7. codeforces 570 D. Tree Requests 树状数组+dfs搜索序

    链接:http://codeforces.com/problemset/problem/570/D D. Tree Requests time limit per test 2 seconds mem ...

  8. Codeforces Round #316 (Div. 2) D. Tree Requests dfs序

    D. Tree Requests time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  9. codeforces 570 D. Tree Requests (dfs)

    题目链接: 570 D. Tree Requests 题目描述: 给出一棵树,有n个节点,1号节点为根节点深度为1.每个节点都有一个字母代替,问以结点x为根的子树中高度为h的后代是否能够经过从新排序变 ...

随机推荐

  1. tomcat7.0.55配置单向和双向HTTPS连接

    HTTPS配置中分为单向连接和双向连接,单向连接只需要服务器安装证书,客户端不需要,双向连接需要服务器和客户端都安装证书 下面的配置都没有用CA签名来配置,都不能用于生产环境,实际配置中是需要CA的, ...

  2. pycharm上传代码到码云(详细)

    如要转载 麻烦请您备注好原文出处!!!!(谢谢合作!) >>首先要去码云注册个账号 提示(尽量使用英文名)创建用户名 使用邮箱登录 >>然后创建库  >填写项目的基础信息 ...

  3. CodeForces - 618F Double Knapsack

    Discription You are given two multisets A and B. Each multiset has exactly n integers each between 1 ...

  4. java多线程04----------final和static

    final和static关键字 final关键字 1.final关键字在单线程中的特点: 1)final修饰的静态成员:必须在进行显示初始化或静态代码块赋值,并且仅能赋值一次. 2)final修饰的类 ...

  5. 如何直接打开使用locate等查找到的文件

    很多的时候需要使用locate去定位文件,找到了文件之后接下来就是使用相应的文本编辑工具如gvim进行打开. 这个时候最烦心的就是去复制一大长串的地址了. 如果能让定位和打开一体操作就最好了,这就需要 ...

  6. npm 更新镜像安装Appium

    npm -g --registry http://registry.cnpmjs.org install appium

  7. 最好的10个移动 Web 应用程序开发框架

    在近期几年里,移动互联网快速发展.市场潜力巨大. 继计算机.互联网之后,移动互联网正掀起第三次信息技术革命的浪潮,新技术.新应用不断涌现.今天这篇文章向大家推荐10大优秀的移动Web开发框架.帮助开发 ...

  8. bootstrap到底是用来做什么的(概念)

    Bootstrap官网:http://v3.bootcss.com/ Bootstrap是Twitter推出的一个用于前端开发的开源工具包.它由Twitter的设计师Mark Otto和Jacob T ...

  9. 显卡接口PCI、VGA、PCIE

    转:1.PCIe扫盲系列博文连载 2.http://blog.sina.com.cn/s/blog_a73f94190102w2j2.html 1.AGP(Accelerated Graphics P ...

  10. HTTPS那些事儿(一)-HTTPS原理

    HTTPS那些事儿(一) 近期看了<http权威指南>的几个章节.对HTTPS有了部分了解,同一时候在网上查阅了一些资料,遂打算记录一下心得,写的仓促,肯定有非常多错误的地方.欢迎大家指正 ...