题目描述

给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种。
将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点。

输入

第一行包含三个整数n,m,k(1<=n<=40,1<=m<=1000,1<=k<=10^18)。
接下来m行,每行三个整数u,v,c(1<=u,v<=n,u不等于v,1<=c<=3),表示从u出发有一条到v的单向边,边长为c。
可能有重边。

输出

包含一行一个正整数,即第k短的路径的长度,如果不存在,输出-1。

样例输入

6 6 11
1 2 1
2 3 2
3 4 2
4 5 1
5 3 1
4 6 3

样例输出

4


题解

矩阵乘法

如果边长只为1的话,很容易想到使用矩阵乘法解决。把邻接矩阵的$2^i$记录,直到路径条数足够为止。此时需要统计的是路径长度小于等于某数的路径数,因此新建一个计数器,每个点向它连边,然后计数器连一个自环即可。然后按照倍增LCA的方法按$i$从大到小处理即可。

那如果边长为2或3呢?可以考虑拆点解决(不能拆边因为边数过多,无法矩乘)。对于每个点再建两个辅助节点并连边,分别代表长度为2、3,长度为2时从第一个辅助节点连出去,长度为3时从第二个辅助节点连出去,即可得到答案。

这里嘴上说着真容易= =

事实上,本题会爆long long特别多。因为边数是点数的指数级别的。所以判路径是否超过k时很复杂,正解的话需要在矩乘里面写,外面判断时也要写,非常的复杂。

好在本题数据弱,因此不需要在矩乘里面写,直接在外部判断即可。

时间复杂度$O(n^3\log k)$。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
ll m;
int n;
struct data
{
ll v[121][121];
ll* operator[](int a) {return v[a];}
data operator*(data &a)const
{
int i , j , k;
data ans;
for(i = 0 ; i <= 3 * n ; i ++ )
for(j = 0 ; j <= 3 * n ; j ++ )
ans[i][j] = 0;
for(i = 0 ; i <= 3 * n ; i ++ )
for(j = 0 ; j <= 3 * n ; j ++ )
for(k = 0 ; k <= 3 * n ; k ++ )
ans[i][j] += v[i][k] * a[k][j];
return ans;
}
bool check()
{
ll ret = 0;
int i;
for(i = 1 ; i <= n ; i ++ )
if((ret += v[i][0] - 1) >= m)
return 1;
return 0;
}
}A[70] , Now , Tmp;
bool judge(data &x , data &y , data &z)
{
data tmp = x * y;
if(tmp[0][0] == -1) return 0;
int i;
ll ret = 0;
for(i = 1 ; i <= n ; i ++ )
if((ret += tmp[i][0]) >= m)
return 0;
z = tmp;
return 1;
}
int main()
{
int q , i , x , y , z;
ll ans = 0;
scanf("%d%d%lld" , &n , &q , &m);
A[0][0][0] = 1;
for(i = 1 ; i <= n ; i ++ ) Now[i][i] = A[0][i][0] = A[0][i][i + n] = A[0][i + n][i + 2 * n] = 1;
for(i = 1 ; i <= q ; i ++ ) scanf("%d%d%d" , &x , &y , &z) , A[0][x + (z - 1) * n][y] ++ ;
for(i = 1 ; ; i ++ )
{
if(i > 65)
{
puts("-1");
return 0;
}
A[i] = A[i - 1] * A[i - 1];
if(A[i].check()) break;
}
for(i -- ; ~i ; i -- )
{
Tmp = Now * A[i];
if(!Tmp.check()) Now = Tmp , ans += (1ll << i);
}
printf("%lld\n" , ans);
return 0;
}

【bzoj4386】[POI2015]Wycieczki 矩阵乘法的更多相关文章

  1. BZOJ4386[POI2015]Wycieczki——矩阵乘法+倍增

    题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...

  2. BZOJ4386 [POI2015]Wycieczki 矩阵+倍增

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4386 题解 一眼就可以看出来是邻接矩阵快速幂. 可是这里的边权不为 \(1\).不过可以发现, ...

  3. BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386 (luogu) https://www.luogu.org/pro ...

  4. BZOJ4386 : [POI2015]Wycieczki

    将每个点拆成三个点,并将转移转化为矩阵乘法,然后倍增即可求出第$k$短路的长度,注意对爆long long情况的处理. 时间复杂度$O(n^3\log k)$. #include<cstdio& ...

  5. BZOJ4386[POI2015]Wycieczki / Luogu3597[POI2015]WYC - 矩乘

    Solution 想到边权为$1$的情况直接矩乘就可以得出长度$<=t$ 的路径条数, 然后二分check一下即可 但是拓展到边权为$2$,$3$ 时, 需要新建节点 $i+n$ 和 $i+2n ...

  6. 【BZOJ-4386】Wycieczki DP + 矩阵乘法

    4386: [POI2015]Wycieczki Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 197  Solved: 49[Submit][Sta ...

  7. bzoj 4386: [POI2015]Wycieczki

    bzoj 4386: [POI2015]Wycieczki 这题什么素质,爆long long就算了,连int128都爆……最后还是用long double卡过的……而且可能是我本身自带大常数吧,T了 ...

  8. *HDU2254 矩阵乘法

    奥运 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submissi ...

  9. *HDU 1757 矩阵乘法

    A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

随机推荐

  1. pandas 常用统计方法

    统计方法 pandas 对象有一些统计方法.它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series. 比如 DataFrame. ...

  2. Linux下Jenkins与GitHub自动构建NetCore与部署

    今天我们来谈谈NetCore在Linux底下的持续集成与部署.NetCore我就不多介绍了,持续集成用的是Jenkins,源代码管理器用的是GitHub.我们就跟着博文往下走吧. 1.Linux环境 ...

  3. 绑定Ligerui中的ligerComboBox二级联动

    $.ajax({ url: "HRHandler.ashx", data: "bz=getDepartData", cache: false, type: &q ...

  4. Bootstrap 按钮(Button)插件加载状态

    通过按钮(Button)插件,您可以添加进一些交互.比如控制按钮的状态.或者为其它组件(工具栏)创建按钮组. 加载状态 如需向按钮添加加载状态,只需要简单地向 button 元素添加 data-loa ...

  5. c++ 作业 10月13日 进制转换最简单方法,控制c++输出格式方法 教材50的表格自己实践一下 例题3.1 setfill() setw()

    #include <iostream> #include <iomanip> using namespace std; int main(){ // int i; // cou ...

  6. react的ant design的UI组件库

    PC官网:https://ant.design/ 移动端网址:https://mobile.ant.design/docs/react/introduce-cn antd-mobile :是 Ant ...

  7. Oracle数据库学习(三)

    6.关于null 数据库中null是一个未知数,没有任何值:进行运算时使用nvl,但是结果仍为空:在聚集函数中只有全部记录为空才会返回null. 7.insert插入 (1)单行记录插入 insert ...

  8. MySQL自学笔记_联结(join)

    1.  背景及原因 关系型数据库的一个基本原则是将不同细分数据放在单独的表中存储.这样做的好处是: 1).避免重复数据的出现 2).方便数据更新 3).避免创建重复数据时出错 例子: 有供应商信息和产 ...

  9. tp5.1发送邮件

    <?php namespace app\admin\controller; use think\Controller; use think\Request; use PHPMailer\PHPM ...

  10. 如何使用koa实现socket.io官网的例子

    socket.io官网中使用express实现了一个最简单的IM即时聊天,今天我们使用koa来实现一下 ### 框架准备 确保你本地已经安装好了nodejs和npm,使用koa要求node版本> ...