又一道。。。分数和取模次数成正比$qwq$


求:$\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)$

原式

$=\sum_{i=1}^N\sum_{j=1}^M\frac{i*j}{gcd(i.j)}$

$=\sum_{d=1}^{N}\sum_{i=1}^{\lfloor\frac{N}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{M}{d}\rfloor}dij[gcd(i,j)==1]$

$=\sum_{d=1}^{N}\sum_{i=1}^{\lfloor\frac{N}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{M}{d}\rfloor}dij\sum_{k|gcd(i,j)}\mu(k)$

$=\sum_{d=1}^{N}\sum_{i=1}^{\lfloor\frac{N}{dk}\rfloor}\sum_{j=1}^{\lfloor\frac{M}{dk}\rfloor}dijk^2\sum_{k=1}^{\lfloor\frac{N}{d}\rfloor} \mu(k)$

$=\sum_{d=1}^{N}d\sum_{k=1}^{\lfloor\frac{N}{d}\rfloor} k^2 \mu(k)\sum_{i=1}^{\lfloor\frac{N}{dk}\rfloor}i\sum_{j=1}^{\lfloor\frac{M}{dk}\rfloor}j$

其中,$\sum_{i=1}^{\lfloor\frac{N}{dk}\rfloor}i\sum_{j=1}^{\lfloor\frac{M}{dk}\rfloor}j$为等差数列,可以$O(1)$求,并且对于不同的$k$是可以整除分块的;

$\sum_{d=1}^{N}d\sum_{k=1}^{\lfloor\frac{N}{d}\rfloor} k^2\mu(k)\sum_{i=1}^{\lfloor\frac{N}{dk}\rfloor}i\sum_{j=1}^{\lfloor\frac{M}{dk}\rfloor}j$中的$\lfloor\frac{N}{d}\rfloor$对于不同的$d$也是可以整除分块的;然后对于$k^2\mu(k)$先线性筛出来,再做个前缀和。

所以时间复杂度是$O(N)$的。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define R register int
using namespace std;
namespace Fread {
static char B[<<],*S=B,*D=B;
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
}using Fread::g;
const int M=,N=;
int mu[N],pri[N/],sum[N],n,m,cnt;
bool v[N]; ll Inv;
inline void MU(int n) { mu[]=;
for(R i=;i<=n;++i) {
if(!v[i]) pri[++cnt]=i,mu[i]=-;
for(R j=;j<=cnt&&i*pri[j]<=n;++j) {
v[i*pri[j]]=true;
if(i%pri[j]==) break;
mu[i*pri[j]]=-mu[i];
}
} for(R i=;i<=n;++i) sum[i]=(ll)(sum[i-]+(ll)(mu[i]+M)*i%M*i)%M;
}
inline int S(int x,int y) {return (ll)x*(x+)%M*Inv%M*y%M*(y+)%M*Inv%M;}
inline int F(int n,int m) {register ll ret=; n>m?swap(n,m):void();
for(R l=,r;l<=n;l=r+) {
r=min(n/(n/l),m/(m/l));
ret=(ret+(ll)(sum[r]-sum[l-]+M)*S(n/l,m/l)%M)%M;
} return ret;
}
signed main() {
#ifdef JACK
freopen("NOIPAK++.in","r",stdin);
#endif
n=g(),m=g(); n>m?swap(n,m):void(); MU(n); register ll ans=;Inv=(M+)/;
for(R l=,r;l<=n;l=r+) {
r=min(n/(n/l),m/(m/l));
(ans+=(ll)(r-l+)*(l+r)%M*Inv%M*F(n/l,m/l)%M)%=M;
} printf("%lld\n",ans);
}

2019.06.09

P1829 [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演的更多相关文章

  1. [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)

    题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...

  2. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...

  3. [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演

    ---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...

  4. luoguP1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题意 注:默认\(n\leqslant m\). 所求即为:\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 因为\(i*j=\gcd(i, ...

  5. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告

    [国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...

  6. P1829 [国家集训队]Crash的数字表格 / JZPTAB

    推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...

  7. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...

  8. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题意:求$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$. 开始开心(自闭)化简: $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$ =$\su ...

  9. 题解-[国家集训队]Crash的数字表格 / JZPTAB

    题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...

随机推荐

  1. 小程序js页面设置上导航颜色

    //导航条颜色更改 wx.setNavigationBarColor({ frontColor: '#ffffff', // 必写项 backgroundColor: '#008de6', // 必写 ...

  2. BZOJ_1999_[Noip2007]Core树网的核_单调队列+树形DP

    BZOJ_1999_[Noip2007]Core树网的核_单调队列+树形DP Description 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T ...

  3. Codeplus2017 12月赛——可做题1

    题目:https://www.luogu.org/problemnew/show/P4030 可以发现一个矩阵是巧妙矩阵当且仅当其所有二阶子矩阵都是巧妙矩阵: 将不巧妙的二阶矩阵计为1,维护二维前缀和 ...

  4. C++多态的实现条件

    #include <iostream> class Person{ public: virtual void say(){ std::cout<<"person&qu ...

  5. 选中DataGrid的Cell而不是row

    主要是针对DataGridCellsPresenter而不是SelectiveScrollingGrid,使用时DataGridRow应用这个style就可以了. <Style x:Key=&q ...

  6. java计算两个时间相差(天、小时、分钟、秒)

    public static Long dateDiff(String startTime, String endTime, String format, String str) { // 按照传入的格 ...

  7. Scala学习——操作符(初)

    经常看到却反应不出来的(->) val a = 2 val b = a->4 //表示生成一个tuple println(b._1+" "b._2) //2 4

  8. LTE协议

    开启通信不归路的第一炮!----LTE整体框架和协议架构概述 (2015-03-09 09:07:04) 转载▼   分类: 通信那些事儿 听说“态度.决心.毅力和细心”一定可以成就一个人!而我们也总 ...

  9. css 中visibility:hidden和display:none有什么区别呢

    <div style="width:100px;height:100px;background:red;visibility:hidden"></div>/ ...

  10. valgrind 代码检查,内存泄漏

    使用平台 linux 下载 http://valgrind.org/ 文档 http://valgrind.org/docs/manual/manual.html 博客 https://www.osc ...