好题鸭。。

不好直接求三角形个数,那就用全集-补集,转化为求三点共线的数量。

具体求法是求出水平共线数量与竖直共线数量和斜线共线数量。

用排列组合的知识可知为水平和竖直的为$C_n^3$​与$C_m^3​$。

求斜线三点共线:显然,对于点$(a,b) (x,y)$连成的线段$(其中a>x,b>y)$,在它们中间有$gcd(a-x,b-y)-1$个整点,因此基本的思路就是枚举两个点,然后第3个点就是$gcd(a-x,b-y)-1$种可能了。我们又发现,这些线段是可以平移和对称(/和\)的,于是并不需要枚举所有的两个点,只用枚举$(0,0)$和$(x,y)$,然后通过平移和对称($*2$)来计算出现的次数。

那么可以发现,这样任意一条线,向上只能平移$(n-i)$,向下$(m - j)$次,

所以出现次数就为$(n - i + 1) * (m - j + 1)$,其中$+1$是因为可以不移动

#include<iostream>
#include<cstdio>
#define ll long long
#define R register ll
using namespace std;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
int n,m;
ll ans;
inline int gcd(int a,int b) {return b?gcd(b,a%b):a;}
signed main() {
n=g()+,m=g()+; ans=1ll*n*m;
ans=1ll*ans*(ans-)*(ans-)/-1ll*m*n*(n-)*(n-)/-1ll*n*m*(m-)*(m-)/;
for(R i=;i<n;++i) for(R j=;j<m;++j) ans-=1ll**(gcd(i,j)-)*(n-i)*(m-j);
printf("%lld\n",ans);
}

2019.06.01

Luogu P3166 [CQOI2014]数三角形 组合数学的更多相关文章

  1. bzoj3505 / P3166 [CQOI2014]数三角形

    P3166 [CQOI2014]数三角形 前置知识:某两个点$(x_{1},,y_{1}),(x_{2},y_{2})\quad (x_{1}<x_{2},y_{1}<y_{2})$所连成 ...

  2. bzoj 3505: [Cqoi2014]数三角形 组合数学

    3505: [Cqoi2014]数三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 478  Solved: 293[Submit][Status ...

  3. 【题解】洛谷P3166 [CQOI2014] 数三角形(组合+枚举)

    洛谷P3166:https://www.luogu.org/problemnew/show/P3166 思路 用组合数求出所有的3个点组合(包含不合法的) 把横竖的3个点共线的去掉 把斜的3个点共线的 ...

  4. BZOJ3505 & 洛谷P3166 [Cqoi2014]数三角形 【数学、数论】

    题目 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. 输入格式 输入一行,包含两个空格分隔的正整数m和n. 输出格式 输出 ...

  5. P3166 [CQOI2014]数三角形

    传送门 直接求还要考虑各种不合法情况,不好计数 很容易想到容斥 把所有可能减去不合法的情况剩下的就是合法情况 那么我们只要任取不同的三点就是所有可能,不合法情况就是三点共线 对于两点 $(x_1,y_ ...

  6. 洛谷P3166 [CQOI2014]数三角形

    题目描述 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形.注意三角形的三点不能共线. 输入输出格式 输入格式: 输入一行,包含两个空格分隔的正整数m和n ...

  7. [CQOI2014]数三角形 题解(组合数学+容斥)

    [CQOI2014]数三角形 题解(数论+容斥) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1328780 链接题目地址:洛谷P3166 BZOJ 350 ...

  8. BZOJ 3505: [Cqoi2014]数三角形 数学

    3505: [Cqoi2014]数三角形 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  9. Bzoj 3505: [Cqoi2014]数三角形 数论

    3505: [Cqoi2014]数三角形 Time Limits: 1000 ms  Memory Limits: 524288 KB  Detailed Limits   Description

随机推荐

  1. Linux-Yum服务器搭建

    Yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及CentOS中的Shell前端软件包管理器.基于RPM包管理,能够从指定的服务器自动下载 ...

  2. SpringBoot_Exception_01_No plugin found for prefix 'spring-boto' in the current project

    一.异常现象 spingbott项目在eclipse中执行maven命令:spring-boot:run, 出现异常: No plugin found for prefix 'spring-boto' ...

  3. fiddler篡改请求数据

    有时需要修改请求或返回结果来验证网站存在的漏洞,因此需要使用到fiddler的断点功能. 如何修改请求前数据? 1.设置请求前断点 Rules--Automatic breakpoints--befo ...

  4. codeforces 658C C. Bear and Forgotten Tree 3(tree+乱搞)

    题目链接: C. Bear and Forgotten Tree 3 time limit per test 2 seconds memory limit per test 256 megabytes ...

  5. leetcode 67. Add Binary (高精度加法)

    Given two binary strings, return their sum (also a binary string). For example,a = "11"b = ...

  6. noip模拟赛 #2

    万年rk2 我写挂大家都挂但是有人比我挂的少 我好不容易卡一波常数然后有人ak ... T1.不想写,等会放链接 T2 给一个方阵,每个地方有一个权值,把它划成两块,不能往回拐弯,求两块极差较大的那个 ...

  7. TPS与QPS

    一.TPS:Transactions Per Second(每秒传输的事物处理个数),即服务器每秒处理的事务数.TPS包括一条消息入和一条消息出,加上一次用户数据库访问.(业务TPS = CAPS × ...

  8. java 基础知识学习 priorityQueue

      ArrayList:动态扩容(相对于数组),数组实现查询非常快但要求连续内存空间. 双向队列LinkedList:不需要像ArrayList一样创建连续的内存空间,它以链表的形式连接各个节点,但是 ...

  9. 我对sobel算子的理解

    转自:http://blog.csdn.net/yanmy2012/article/details/8110316 索贝尔算子(Sobeloperator)主要用作边缘检测,在技术上,它是一离散性差分 ...

  10. Apache日志解读

    想要知道什么人在什么时候浏览了网站的哪些内容吗?查看Apache的访问日志就可以知道.访问日志是Apache的标准日志,本文详细解释了访问日志的内容以及相关选项的配置. 一.访问日志的格式  Apac ...