求中位数为K的区间的数目
给定一个长为 $n$ 的序列和常数 $k$,求此序列的中位数为 $k$ 的区间的数量。一个长为 $m$ 的序列的中位数定义为将此序列从小到大排序后第 $\lceil m / 2 \rceil$ 个数。
解法
直接考虑中位数等于 $k$ 的区间是比较困难的,我们转而考虑中位数大于等于 $k$ 的区间个数。按题目中所采用中位数定义,一个序列的中位数大于等于 $k$ 当且仅当序列中大于等于 $k$ 的元素的数目超过序列长度的一半。
对于某个固定的 $k$,将序列中大于等于 $k$ 的元素替换成 $1$,小于 $k$ 的元素替换成 $-1$,则区间的中位数大于等于 $k$ 就等价于区间和大于 $0$ 。从而可以用树状数组求出区间和大于 $0$ 的区间个数。复杂度 $O(n\log n)$ 。
若中位数的定义改成排序后第 $\lceil (m +1)/ 2 \rceil$ 个数,只要将算法稍加修改即可。
优化
给定一个长度为 $n$ 的由 $-1$、$1$ 构成的序列 $a$,求区间和大于 $0$ 的区间数目。这个问题可以在 $O(n)$ 的时间内解决。
设 $a$ 序列的前缀和序列为 $s$,则当我们考虑以 $i$ 为右端点的满足条件的区间数时,只需要知道 $s[1..i-1]$ 中小于 $s[i]$ 的元素的数目,把这个值记作 $c[i]$。而 $s[i]$ 和 $s[i-1]$ 必定相差 $1$ 或 $-1$ 。考虑 $a[i]=1$ 的情形,此时 $s[i] = s[i-1] + 1$,因此有 $c[i]$ 等于 $c[i-1]$ 加上 $s[i..i-1]$ 中 $s[i-1]$ 出现的次数。由于 $s[i]$ 最多有 $O(n)$ 个不同取值,我们可以用一个数组动态维护 $s[1..i]$ 中每个数出现的次数,这样就可以 $O(1)$ 地由 $c[i-1]$ 算出 $c[i]$ 。
Reference
http://codeforces.com/blog/entry/18879#comment-238126
求中位数为K的区间的数目的更多相关文章
- 2017第八届蓝桥杯 K倍区间
标题: k倍区间 给定一个长度为N的数列,A1, A2, - AN,如果其中一段连续的子序列Ai, Ai+1, - Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间. ...
- 蓝桥杯试题 k倍区间(dp)
问题描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间. ...
- k倍区间
看大佬的代码看了半天,终于算是懂了 标题: k倍区间 给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就 ...
- 第八届蓝桥杯省赛 K倍区间
问题描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间. ...
- k倍区间 前缀和【蓝桥杯2017 C/C++ B组】
标题: k倍区间 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍 ...
- 蓝桥杯-k倍区间
http://lx.lanqiao.cn/problem.page?gpid=T444 问题描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, .. ...
- k倍区间:前缀和
[蓝桥杯][2017年第八届真题]k倍区间 题目描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数 ...
- K倍区间 蓝桥杯
问题描述 给定一个长度为N的数列,A1, A2, ... AN,如果其中一段连续的子序列Ai, Ai+1, ... Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间. ...
- 【题解】51nod 1685第K大区间2
二分答案+++++++(。・ω・。) 感觉这个思路好像挺常用的:求第\(K\) 大 --> 二分第 \(K\) 大的值 --> 检验当前二分的值排名是第几.前提:排名与数值大小成单调性变化 ...
随机推荐
- 【BZOJ4866】[YNOI2017] 由乃的商场之旅(莫队)
点此看题面 大致题意: 给你一个字符串,每次给你一段区间,问这段区间内有多少个字符串在重新排列后可以变成一个回文串. 关于莫队 详见这篇博客:莫队算法学习笔记(一)--普通莫队. 关于回文 要使一个字 ...
- FreeRTOS_软件定时器
FreeRTOS 软件定时器 实验 创建2个任务,start_task.timercontrol_task. start_stask:创建timercontrol_task任务:创建周期定时器Auto ...
- 2018.5.20 oracle强化练习
--现在有一个商店的数据库,记录客户以及购物的情况, 商品表goods (商品号 goodsid varchar2(8) 商品名 goodsname varchar2(20) 单价 unitprice ...
- spring-boot自定义启动端口
有时候我们可能需要启动不止一个SpringBoot,而SpringBoot默认的端口号是8080,所以这时候我们就需要修改SpringBoot的默认端口了.修改SpringBoot的默认端口有两种方式 ...
- 【luogu P3608 [USACO17JAN]Balanced Photo平衡的照片】 题解
题目链接:https://www.luogu.org/problemnew/show/P3608 乍一看很容易想到O(N^2)的暴力. 对于每个H[i]从i~i-1找L[i]再从i+1~n找R[i], ...
- C#创建和使用ActiveX组件
开发基于.Net平台上的程序员是很难从本质上把Visual C#和ActiveX组件联起来,虽然在使用Visual C#开发应用程序时,有时为了快速开发或者由于.Net FrameWork SDK的不 ...
- Mac 系统 + Chrome浏览器 网页前端出现中文文字反转或顺序错乱
问题背景 React开发的系统,收到一个BUG反馈,*"号个人统计"文字不正确,应为"个人号统计"*. 收到BUG后,打开浏览器查验是什么情况,难道犯了最基本的 ...
- notify()和notifyAll()主要区别
notify()和notifyAll()都是Object对象用于通知处在等待该对象的线程的方法. void notify(): 唤醒一个正在等待该对象的线程.void notifyAll(): 唤醒所 ...
- 通过LDB_PROCESS函数使用逻辑数据库
1.概览 通过LDB_PROCESS函数可以允许任何程序访问逻辑数据库,允许一个程序访问多个逻辑数据库,当然也允许多次连续访问访问同个逻辑数据库.当使用LDB_PROCESS函数来访问逻辑数据库 ...
- 详解----memcache服务端与客户端
Memcache是danga.com的一个项目,用这个缓存项目来构建自己大负载的网站,来分担数据库的压力. 它可以应对任意多个连接,使用非阻塞的网络IO.由于它的工作机制是在内存中开辟一块空间,然后建 ...