题目描述 Description

给定一个无向连通图,其节点编号为1到N,其边的权值为非负整数。试求出一条从1号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大。该路径可以重复经过某些节点或边,当一条边在路径中出现多次时,其权值在计算“XOR 和”时也要被重复计算相应多的次数。

直接求解上述问题比较困难,于是你决定使用非完美算法。具体来说,从1号节点开始,以相等的概率,随机选择与当前节点相关联的某条边,并沿这条边走到下一个节点,重复这个过程,直到走到N号节点为止,便得到一条从1号节点到N号节点的路径。显然得到每条这样的路径的概率是不同的并且每条这样的路径的“XOR 和”也不一样。现在请你求出该算法得到的路径的“XOR和”的期望值。

输入描述 Input Description

第一行是用空格隔开的两个正整数N和M,分别表示该图的节点数和边数。紧接着的M行,每行是用空格隔开的三个非负整数u,v和w(1≤u,v≤N, 0≤w≤109),表示该图的一条边(u,v),其权值为w。输入的数据保证图连通,30%的数据满足N≤30,100%的数据满足2≤N≤100,M≤10000,但是图中可能有重边或自环。

输出描述 Output Description

仅包含一个实数,表示上述算法得到的路径的“XOR和”的期望值,要求保留三位小数。(建议使用精度较高的数据类型进行计算)

样例输入 Sample Input

2 2
1 1 2
1 2 3

样例输出 Sample Output

2.333

数据范围及提示 Data Size & Hint

样例解释:有1/2的概率直接从1号节点走到2号节点,该路径的“XOR和”为3;有1/4的概率从1号节点走一次1号节点的自环后走到2号节点,该路径的“XOR和”为1;有1/8的概率从1号节点走两次1号节点的自环后走到2号节点,该路径的“XOR和”为3;......;依此类推,可知“XOR和”的期望值为:3/2+1/4+3/8+1/16+3/32+....=7/3,约等于2.333。

数据范围如题

/*
对于异或的题目,一般是按位拆分,设f[x]为从x到n的异或期望。
f[x]=Σ(1/d[x])*f[y](边权为0)+Σ(1/d[x])*(1-f[y])(边权为1)
将上式变形得到:
f[x]-Σ(1/d[x])*f[y](边权为0)+Σ(1/d[x])*f[y](边权为1)=Σ (1/d[x])(边权为1)
然后高斯消元。
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#define N 110
#define M 10010
#define ld long double
using namespace std;
int head[N],d[N],cnt,n,m;
ld a[N][N],ans;
struct node{int v,w,pre;}e[M*];
void add(int u,int v,int w){
e[++cnt].v=v;e[cnt].w=w;e[cnt].pre=head[u];head[u]=cnt;
}
void gauss(){
for(int i=;i<=n;i++){
int id=i;ld maxn=fabs(a[i][i]);
for(int j=i+;j<=n;j++) if(fabs(a[j][i])>maxn) id=j,fabs(a[j][i]);
if(id!=i) swap(a[i],a[id]);
ld t=a[i][i];
for(int j=;j<=n+;j++) a[i][j]/=t;
for(int j=;j<=n;j++)
if(j!=i){
ld t=a[j][i];
for(int k=;k<=n+;k++)
a[j][k]-=t*a[i][k];
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int u,v,w;scanf("%d%d%d",&u,&v,&w);add(u,v,w);d[u]++;
if(u!=v) add(v,u,w),d[v]++;
}
for(int t=;t<=;t++){
memset(a,,sizeof(a));
for(int i=;i<n;i++){
a[i][i]=1.0;
for(int j=head[i];j;j=e[j].pre){
if(e[j].w&(<<t)) a[i][e[j].v]+=1.0/d[i],a[i][n+]+=1.0/d[i];
else a[i][e[j].v]-=1.0/d[i];
}
}
a[n][n]=1.0;gauss();ans+=a[][n+]*(<<t);
}
printf("%.3lf",(double)ans);
return ;
}

xor和路径(codevs 2412)的更多相关文章

  1. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  2. BZOJ2337: [HNOI2011]XOR和路径

    题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...

  3. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  4. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  5. 【BZOJ2337】Xor和路径(高斯消元)

    [BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...

  6. [HNOI2011]XOR和路径 && [HNOI2013]游走

    [HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权 ...

  7. 洛谷 P4151 [WC2011]最大XOR和路径 解题报告

    P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...

  8. [WC2011]最大XOR和路径 线性基

    [WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...

  9. P4151 [WC2011]最大XOR和路径

    P4151 [WC2011]最大XOR和路径 一道妙极了的题. 首先直接从1走到n 然后现在图上有很多环 所以可以在走到n之后走到环上一个点,再走一遍环,再原路返回.这样就会xor上环的权值. 然后只 ...

随机推荐

  1. 问题006:为什么用java.exe执行编译的类文件的时候,不这样写java Welcome.class

    为什么用java.exe执行编译的类文件的时候,不这样写java Welcome.class 是因为java虚拟机调用Welcome的时候,已经替我们增减了.class,如果你还要写java Welc ...

  2. JS MarcoTasks MicroTasks

    JS MarcoTasks MicroTasks 在JS的event loop中,有两种任务队列microtasks和macrotasks microtasks process.nextTick Pr ...

  3. 可怕的万圣节 Linux 命令

    虽然现在不是万圣节,也可以关注一下 Linux 可怕的一面.什么命令可能会显示鬼.巫婆和僵尸的图像?哪个会鼓励"不给糖果就捣蛋"的精神? crypt 好吧,我们一直看到 crypt ...

  4. JZOJ 5812. 【NOIP提高A组模拟2018.8.14】 区间

    5812. [NOIP提高A组模拟2018.8.14] 区间 (File IO): input:range.in output:range.out Time Limits: 1000 ms  Memo ...

  5. JZOJ 3461. 【NOIP2013模拟联考5】小麦亩产一千八(kela)

    3461. [NOIP2013模拟联考5]小麦亩产一千八(kela) (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Det ...

  6. 使用Xshell对虚拟机上的Ubuntu系统进行远程连接

    需要在Linux上安装openssh-server 1.在Ubuntu系统的终端下输入命令:sudo apt install openssh-server 2.在Xshell中输入指定连接的主机IP, ...

  7. 传送流(TS)的基础知识

    数字电视的TS包和TS流的组成和功能 综合考虑几下几个因素: (1)包的长度不能过短,否则包头开销所占比例过大, 导致传输效率下降 (2)包的长度不能过长,否则在丢失同步的情况下恢复同步的 周期过长, ...

  8. HDU:2846-Repository

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2846 Repository Time Limit: 2000/1000 MS (Java/Others) ...

  9. 动态规划:完全背包问题-HDU1114-Piggy-Bank

    解题心得: 1.这是一个完全背包问题的变形,题目要求是求在规定的重量下求价值最小,所以需要将d[0]=0关键的初始化 2.当不可能出现最小的价值时,d的状态并没有被改变,说明并没有放进去一个硬币. 题 ...

  10. centos6.4编译hadoop2.4源码

    4.1.环境: 1)Linux 64 位操作系统,CentOS 6.4 版本,VMWare 搭建的虚拟机 2)虚拟机可以联网 4.2.官方编译说明: 解压命令:tar -zxvf hadoop-2.4 ...