题目描述 Description

给定一个无向连通图,其节点编号为1到N,其边的权值为非负整数。试求出一条从1号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大。该路径可以重复经过某些节点或边,当一条边在路径中出现多次时,其权值在计算“XOR 和”时也要被重复计算相应多的次数。

直接求解上述问题比较困难,于是你决定使用非完美算法。具体来说,从1号节点开始,以相等的概率,随机选择与当前节点相关联的某条边,并沿这条边走到下一个节点,重复这个过程,直到走到N号节点为止,便得到一条从1号节点到N号节点的路径。显然得到每条这样的路径的概率是不同的并且每条这样的路径的“XOR 和”也不一样。现在请你求出该算法得到的路径的“XOR和”的期望值。

输入描述 Input Description

第一行是用空格隔开的两个正整数N和M,分别表示该图的节点数和边数。紧接着的M行,每行是用空格隔开的三个非负整数u,v和w(1≤u,v≤N, 0≤w≤109),表示该图的一条边(u,v),其权值为w。输入的数据保证图连通,30%的数据满足N≤30,100%的数据满足2≤N≤100,M≤10000,但是图中可能有重边或自环。

输出描述 Output Description

仅包含一个实数,表示上述算法得到的路径的“XOR和”的期望值,要求保留三位小数。(建议使用精度较高的数据类型进行计算)

样例输入 Sample Input

2 2
1 1 2
1 2 3

样例输出 Sample Output

2.333

数据范围及提示 Data Size & Hint

样例解释:有1/2的概率直接从1号节点走到2号节点,该路径的“XOR和”为3;有1/4的概率从1号节点走一次1号节点的自环后走到2号节点,该路径的“XOR和”为1;有1/8的概率从1号节点走两次1号节点的自环后走到2号节点,该路径的“XOR和”为3;......;依此类推,可知“XOR和”的期望值为:3/2+1/4+3/8+1/16+3/32+....=7/3,约等于2.333。

数据范围如题

/*
对于异或的题目,一般是按位拆分,设f[x]为从x到n的异或期望。
f[x]=Σ(1/d[x])*f[y](边权为0)+Σ(1/d[x])*(1-f[y])(边权为1)
将上式变形得到:
f[x]-Σ(1/d[x])*f[y](边权为0)+Σ(1/d[x])*f[y](边权为1)=Σ (1/d[x])(边权为1)
然后高斯消元。
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#define N 110
#define M 10010
#define ld long double
using namespace std;
int head[N],d[N],cnt,n,m;
ld a[N][N],ans;
struct node{int v,w,pre;}e[M*];
void add(int u,int v,int w){
e[++cnt].v=v;e[cnt].w=w;e[cnt].pre=head[u];head[u]=cnt;
}
void gauss(){
for(int i=;i<=n;i++){
int id=i;ld maxn=fabs(a[i][i]);
for(int j=i+;j<=n;j++) if(fabs(a[j][i])>maxn) id=j,fabs(a[j][i]);
if(id!=i) swap(a[i],a[id]);
ld t=a[i][i];
for(int j=;j<=n+;j++) a[i][j]/=t;
for(int j=;j<=n;j++)
if(j!=i){
ld t=a[j][i];
for(int k=;k<=n+;k++)
a[j][k]-=t*a[i][k];
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int u,v,w;scanf("%d%d%d",&u,&v,&w);add(u,v,w);d[u]++;
if(u!=v) add(v,u,w),d[v]++;
}
for(int t=;t<=;t++){
memset(a,,sizeof(a));
for(int i=;i<n;i++){
a[i][i]=1.0;
for(int j=head[i];j;j=e[j].pre){
if(e[j].w&(<<t)) a[i][e[j].v]+=1.0/d[i],a[i][n+]+=1.0/d[i];
else a[i][e[j].v]-=1.0/d[i];
}
}
a[n][n]=1.0;gauss();ans+=a[][n+]*(<<t);
}
printf("%.3lf",(double)ans);
return ;
}

xor和路径(codevs 2412)的更多相关文章

  1. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  2. BZOJ2337: [HNOI2011]XOR和路径

    题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...

  3. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  4. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  5. 【BZOJ2337】Xor和路径(高斯消元)

    [BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...

  6. [HNOI2011]XOR和路径 && [HNOI2013]游走

    [HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权 ...

  7. 洛谷 P4151 [WC2011]最大XOR和路径 解题报告

    P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...

  8. [WC2011]最大XOR和路径 线性基

    [WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...

  9. P4151 [WC2011]最大XOR和路径

    P4151 [WC2011]最大XOR和路径 一道妙极了的题. 首先直接从1走到n 然后现在图上有很多环 所以可以在走到n之后走到环上一个点,再走一遍环,再原路返回.这样就会xor上环的权值. 然后只 ...

随机推荐

  1. UNIX网络通信

    一.网络协议 国际标准化组织(ISO)定义了网络协议的基本框架,被称为OSI模型.OSI模型包括应用层.表示层.会话层.传输层.网络层.数据链路层及物理层.而OSI模型过于复杂至今没有得到实际的应用. ...

  2. 4.在Cisco Packet Tracerl里路由器密码重置

    在路由器的特权模式的密码忘记的情况下,关闭路由器的电源,在接通电源,在路由器载入的时候,按ctrl+c,直接进入monitor模式 输入:confreg 0x2142 reset 重新进入后 enab ...

  3. Linux下面自动清理超过指定大小的文件

    Linux下面自动清理超过指定大小的文件 思路:1)查找test目录下的所有的文件2)判断是否大于100M3)大于100M则清空 以byte为单位显示文件大小,然后和100M大小做对比. 100M换算 ...

  4. Nginx 配置支持 WAF

    WAF(Web Application Firewall),中文名叫做“Web应用防火墙” WAF的定义是这样的:Web应用防火墙是通过执行一系列针对HTTP/HTTPS的安全策略来专门为Web应用提 ...

  5. Android Studio 安装与使用ADB wifi 无线调试

    首先,安装ADB WIFI File->Settings->Plugins 其次,用USB连接手机与电脑(并开启手机的调试模式) 任务栏若无提示,即可拔下USB线,开始无线调试 任务栏若是 ...

  6. [BZOJ3312][USACO]不找零(状压DP)

    Description 约翰带着 N 头奶牛在超市买东西,现在他们正在排队付钱,排在第 i 个位置的奶牛需要支付 Ci元.今天说好所有东西都是约翰请客的,但直到付账的时候,约翰才意识到自己没带钱,身上 ...

  7. ListNode Java创建链表

    用了一种自创的比较简洁的方式来创建链表 class ListNode { //为了方便,这两个变量都使用pub1ic, //存放数据的变量,直接为int型 public int data; //存放结 ...

  8. Http状态码(了解)

    一些常见的http状态码 200 - OK,服务器成功返回网页     - Standard response for successful HTTP requests. 301 - Moved Pe ...

  9. 「微信小程序免费辅导教程」24,基础内容组件icon的使用探索与7月26日微信公众平台的更新解读

  10. Go语言之并发编程(二)

    通道(channel) 单纯地将函数并发执行是没有意义的.函数与函数间需要交换数据才能体现并发执行函数的意义.虽然可以使用共享内存进行数据交换,但是共享内存在不同的goroutine中容易发生竞态问题 ...