Python 的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n)。对于大数据量,则可以用二分查找进行优化。二分查找要求对象必须有序,其基本原理如下:

  • 1.从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;
  • 2.如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。
  • 3.如果在某一步骤数组为空,则代表找不到。

二分查找也成为折半查找,算法每一次比较都使搜索范围缩小一半, 其时间复杂度为 O(logn)。

我们分别用递归和循环来实现二分查找:

def binary_search_recursion(lst, value, low, high):
if high < low:
return None
mid = (low + high)//2
if lst[mid] > value:
return binary_search_recursion(lst, value, low, mid - 1)
elif lst[mid] < value:
return binary_search_recursion(lst, value, mid + 1, high)
else:
return mid def binary_search_loop(lst, value):
low, high = 0, len(lst) - 1
while low <= high:
mid = (low + high) //2
if lst[mid] < value:
low = mid + 1
elif lst[mid] > value:
high = mid - 1
else:
return mid
return None

接着对这两种实现进行一下性能测试:

if __name__ == "__main__":
import random lst = [random.randint(0, 10000) for _ in range(100000)]
lst.sort() def test_recursion():
binary_search_recursion(lst, 999, 0, len(lst) - 1) def test_loop():
binary_search_loop(lst, 999) import timeit t1 = timeit.Timer("test_recursion()", setup="from __main__ import test_recursion")
t2 = timeit.Timer("test_loop()", setup="from __main__ import test_loop") print("Recursion:", t1.timeit())
print("Loop:", t2.timeit())

执行结果如下:

Recursion: 3.6007582582639275
Loop: 2.6299082704597954

可以看出循环方式比递归效率高。

Python 有一个 bisect 模块,用于维护有序列表。bisect 模块实现了一个算法用于插入元素到有序列表。在一些情况下,这比反复排序列表或构造一个大的列表再排序的效率更高。Bisect 是二分法的意思,这里使用二分法来排序,它会将一个元素插入到一个有序列表的合适位置,这使得不需要每次调用 sort 的方式维护有序列表。

下面是一个简单的使用示例:

import bisect
import random
print('New Pos Contents\n--- --- --------')
l = []
for i in range(1, 15):
r = random.randint(1, 100)
position = bisect.bisect(l, r)
bisect.insort(l, r)
print('%3d %3d' % (r, position), l)

输出结果

New  Pos Contents
--- --- --------
31 0 [31]
7 0 [7, 31]
54 2 [7, 31, 54]
39 2 [7, 31, 39, 54]
70 4 [7, 31, 39, 54, 70]
63 4 [7, 31, 39, 54, 63, 70]
98 6 [7, 31, 39, 54, 63, 70, 98]
11 1 [7, 11, 31, 39, 54, 63, 70, 98]
84 7 [7, 11, 31, 39, 54, 63, 70, 84, 98]
75 7 [7, 11, 31, 39, 54, 63, 70, 75, 84, 98]
33 3 [7, 11, 31, 33, 39, 54, 63, 70, 75, 84, 98]
2 0 [2, 7, 11, 31, 33, 39, 54, 63, 70, 75, 84, 98]
16 3 [2, 7, 11, 16, 31, 33, 39, 54, 63, 70, 75, 84, 98]
66 9 [2, 7, 11, 16, 31, 33, 39, 54, 63, 66, 70, 75, 84, 98]

Bisect模块提供的函数有:

  • bisect.bisect_left(a,x, lo=0, hi=len(a)) :

查找在有序列表 a 中插入 x 的index。lo 和 hi 用于指定列表的区间,默认是使用整个列表。如果 x 已经存在,在其左边插入。返回值为 index。

  • bisect.bisect_right(a,x, lo=0, hi=len(a))
  • bisect.bisect(a, x,lo=0, hi=len(a)) :

这2个函数和 bisect_left 类似,但如果 x 已经存在,在其右边插入。

  • bisect.insort_left(a,x, lo=0, hi=len(a)) :

在有序列表 a 中插入 x。和 a.insert(bisect.bisect_left(a,x, lo, hi), x) 的效果相同。

  • bisect.insort_right(a,x, lo=0, hi=len(a))
  • bisect.insort(a, x,lo=0, hi=len(a)) :

和 insort_left 类似,但如果 x 已经存在,在其右边插入。

def grade(score, breakpoints=[60, 70, 80, 90], grades='FDCBA'):
i = bisect.bisect(breakpoints, score)
return grades[i]
print([grade(score) for score in [33, 99, 77, 70, 89, 90, 100]])

执行结果

['F', 'A', 'C', 'C', 'B', 'A', 'A']

同样,我们可以用 bisect 模块实现二分查找:

def binary_search_bisect(lst, x):
from bisect import bisect_left
i = bisect_left(lst, x)
if i != len(lst) and lst[i] == x:
return i
return None

执行结果如下

Recursion: 3.6801888509377982
Loop: 2.557316803338421
Bisect 1.7585010485425743
可以看到其比循环实现略快,比递归实现差不多要快一半。

Python 著名的数据处理库 numpy 也有一个用于二分查找的函数 numpy.searchsorted, 用法与 bisect 基本相同,只不过如果要右边插入时,需要设置参数 side='right',例如:

import numpy as np
from bisect import bisect_left, bisect_right
data = [2, 4, 7, 9]
bisect_left(data, 4)
np.searchsorted(data, 4)
bisect_right(data, 4)
np.searchsorted(data, 4, side='right')

numpy.searchsorted 效率是很低的,跟 bisect 根本不在一个数量级上。因此 searchsorted 不适合用于搜索普通的数组,但是它用来搜索 numpy.ndarray 是相当快的:

numpy.searchsorted 可以同时搜索多个值:

import numpy as np
np.searchsorted([1,2,3,4,5], 3) np.searchsorted([1,2,3,4,5], 3, side='right') np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
 

二分查找与 bisect 模块的更多相关文章

  1. python bisect 排序模块 二分查找与 bisect 模块

    python 3.6.5 import bisect bisect_list=dir(bisect)print(bisect_list)bisect_list = ['__builtins__', ' ...

  2. python二分查找模块bisect

    bisect模块用于二分查找,非常方便. Bisect模块提供的函数有: 1.查找 bisect.bisect_left(a,x, lo=0, hi=len(a)) : 查找在有序列表a中插入x的in ...

  3. bisect 二分查找

    先说明的是,使用这个模块的函数前先确保操作的列表是已排序的. 先看看 insort  函数: 其插入的结果是不会影响原有的排序. 再看看 bisect  函数: 其目的在于查找该数值将会插入的位置并返 ...

  4. python的算法:二分法查找(2)--bisect模块

    Python 有一个 bisect 模块,用于维护有序列表.bisect 模块实现了一个算法用于插入元素到有序列表.在一些情况下,这比反复排序列表或构造一个大的列表再排序的效率更高.Bisect 是二 ...

  5. python数组查找算法---bisect二分查找插入

    1 实例 这个模块只有几个函数, 一旦决定使用二分搜索时,立马要想到使用这个模块 [python] view plaincopyprint? import bisect L = [1,3,3,6,8, ...

  6. 使用bisect库实现二分查找

    手动实现 假如有一个有序表nums,怎么样在nums里找到某个值的位置呢?没错,就是nums.index(k),哈哈哈哈哈哈哈-- 假如nums很长很长,那就要祭出二分查找了 def binary_s ...

  7. Python的bisect模块

    Python的列表(list)类型内部是一个线性表,在线性表中查找元素复杂度为O(N),即调用list.index()的复杂的是O(N).当数据量较大时,应该使用二分查找优化,二分查找范围每次缩小一般 ...

  8. [Python之路] bisect模块

    bisect模块 bisect是Python提供的二分查找模块 源码如下: """Bisection algorithms.""" def ...

  9. 二分查找-python

    约12年年底的时候,接触了python不到半年的样子,入门是直接实现GUI测试case的.今天面试地平线机器人,发现忘得差不多了- -. 当时的问题是这样的 写一个二分查找是实现,我好像不记得二分查找 ...

随机推荐

  1. jQuery addClass() 源码解读

    addClass: function( value ) { var classes, elem, cur, clazz, j, i = 0, len = this.length, proceed = ...

  2. nodejs 学习(1) http与fs

    var http=require("http"), fs=require('fs'); var server=http.createServer(function(req,res) ...

  3. HDU 5974 A Simple Math Problem 数学题

    http://acm.hdu.edu.cn/showproblem.php?pid=5974 遇到数学题真的跪.. 题目要求 X + Y = a lcm(X, Y) = b 设c = gcd(x, y ...

  4. C#的特性学习

    转自:https://www.cnblogs.com/rohelm/archive/2012/04/19/2456088.html   特性提供功能强大的方法,用以将元数据或声明信息与代码(程序集.类 ...

  5. IDEA Maven无法添加依赖到项目中

    IDEA--------->File-------->Setting------------>Maven 勾上即可,OK啦! 完美解决了

  6. cucumber 文件目录结构和执行顺序

    引用链接:http://www.cnblogs.com/timsheng/archive/2012/12/10/2812164.html Cucumber是Ruby世界的BDD框架,开发人员主要与两类 ...

  7. Mysql order by 多字段排序

    mysql单个字段降序排序: select * from table order by id desc; mysql单个字段升序排序: select * from table order by id ...

  8. LR中webservice服务测试的脚本

    Action(){ /* 测试QQ是否在线的功能接口 输入参数:QQ号码 String,默认QQ号码:8698053. 返回数据:String,Y = 在线:N = 离线:E = QQ号码错误:A = ...

  9. tomcat 发布本地文件

    应用场景,通过web,jsp访问本地mouse文件夹的静态文件 通过修改tomcat配置文件server.xml <!--在Host标签下加入Context标签,path指的是服务器url请求地 ...

  10. 洛谷 P1774 最接近神的人_NOI导刊2010提高(02)

    题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的殿堂”.小FF猜想里面应该就有王室的 ...