The North American Invitational Programming Contest 2018 E. Prefix Free Code
Consider nn initial strings of lower case letters, where no initial string is a prefix of any other initial string. Now, consider choosing kk of the strings (no string more than once), and concatenating them together. You can make this many such composite strings:
\displaystyle n \times (n - 1) \times (n - 2) \times . . . \times (n - k + 1)n×(n−1)×(n−2)×...×(n−k+1)
Consider sorting all of the composite strings you can get via this process in alphabetical order. You are given a test composite string, which is guaranteed to belong on this list. Find the position of this test composite string in the alphabetized list of all composite strings, modulo 10^9 + 7109+7. The first composite string in the list is at position 11.
Input Format
Each input will consist of a single test case.
Note that your program may be run multiple times on different inputs.
Each test case will begin with a line with two integers, first nn and then k (1 \le k \le n)k(1≤k≤n), where nn is the number of initial strings, and kk is the number of initial strings you choose to form composite strings. The upper bounds of nnand kk are limited by the constraints on the strings, in the following paragraphs.
Each of the next nn lines will contain a string, which will consist of one or more lower case letters a..za..z. These are the nn initial strings. It is guaranteed that none of the initial strings will be a prefix of any other of the initial strings.
Finally, the last line will contain another string, consisting of only lower case letters a..za..z. This is the test composite string, the position of which in the sorted list you must find. This test composite string is guaranteed to be a concatenation of kk unique initial strings.
The sum of the lengths of all input strings, including the test string, will not exceed 10^6106 letters.
Output Format
Output a single integer, which is the position in the list of sorted composite strings where the test composite string occurs. Output this number modulo 10^9 + 7109+7.
样例输入1
5 3
a
b
c
d
e
cad
样例输出1
26
样例输入2
8 8
font
lewin
darko
deon
vanb
johnb
chuckr
tgr
deonjohnbdarkotgrvanbchuckrfontlewin
样例输出2
12451
题目来源
The North American Invitational Programming Contest 2018
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <string>
#include <deque>
using namespace std;
#define ll long long
#define N 1000009
#define gep(i,a,b) for(int i=a;i<=b;i++)
#define gepp(i,a,b) for(int i=a;i>=b;i--)
#define gep1(i,a,b) for(ll i=a;i<=b;i++)
#define gepp1(i,a,b) for(ll i=a;i>=b;i--)
#define mem(a,b) memset(a,b,sizeof(a))
#define mod 1000000007
#define lowbit(x) x&(-x)
ll n,m;
ll pos,dfn;
ll tree[N][],c[N],a[N];
char s[N];
ll vis[N];
ll fac[N] = {, }, inv[N] = {, }, f[N] = {, };
void init(){
gep(i,,N){
fac[i]=fac[i-]*i%mod;
f[i]=(mod-mod/i)*f[mod%i]%mod;
inv[i]=inv[i-]*f[i]%mod;
}
}
ll A(ll n,ll m){
if(n<m) return ;
return fac[n]*inv[n-m]%mod;//一开始*写成了%
}
void update(ll i,ll num){
while(i<=n){
c[i]+=num;
i+=lowbit(i);
}
}
ll getsum(ll i){
ll sum=;
while(i>){
sum+=c[i];
i-=lowbit(i);
}
return sum;
}
void dfs(int u){
if(vis[u]) vis[u]=++dfn;//排序
gep(i,,){
if(tree[u][i]) dfs(tree[u][i]);
}
}
int main()
{
init();
scanf("%lld%lld",&n,&m);
pos=;
gep1(i,,n){
scanf("%s",s);
ll l=strlen(s)-;
ll x=;
//建字典树
gep1(j,,l){
if(!tree[x][s[j]-'a']) tree[x][s[j]-'a']=++pos;
x=tree[x][s[j]-'a'];
}
vis[x]=;//只标记最后的元素
}
dfn=;
dfs();
scanf("%s",s);
ll l=strlen(s)-;
ll x=,cnt=;
gep1(i,,l){
x=tree[x][s[i]-'a'];
if(vis[x]) a[++cnt]=vis[x],x=;//找到每个的标记,每次还要x==0
}
gep1(i,,n) update(i,);
ll ans=;
gep1(i,,cnt){
update(a[i],-);
ll ans1=getsum(a[i]);//前面还可以再用的
ll ans2=A(n-i,m-i);
ans=(ans+ans1*ans2%mod)%mod;
}
printf("%lld\n",ans);
return ;
}
The North American Invitational Programming Contest 2018 E. Prefix Free Code的更多相关文章
- The North American Invitational Programming Contest 2018 D. Missing Gnomes
A family of nn gnomes likes to line up for a group picture. Each gnome can be uniquely identified by ...
- The North American Invitational Programming Contest 2018 H. Recovery
Consider an n \times mn×m matrix of ones and zeros. For example, this 4 \times 44×4: \displaystyle \ ...
- North American Invitational Programming Contest 2018
A. Cut it Out! 枚举第一刀,那么之后每切一刀都会将原问题划分成两个子问题. 考虑DP,设$f[l][r]$表示$l$点顺时针一直到$r$点还未切割的最小代价,预处理出每条边的代价转移即可 ...
- The North American Invitational Programming Contest 2017 题目
NAIPC 2017 Yin and Yang Stones 75.39% 1000ms 262144K A mysterious circular arrangement of black st ...
- North American Invitational Programming Contest (NAIPC) 2017
(待补) A. Pieces of Parentheses 将括号处理完成后排序,方式参加下面的博客.然后做一遍背包即可. 2018 Multi-University Training Contest ...
- North American Invitational Programming Contest (NAIPC) 2016
(待补) A. Fancy Antiques 爆搜. B. Alternative Bracket Notation C. Greetings! D. Programming Team 0/1分数规划 ...
- AtCoder SoundHound Inc. Programming Contest 2018 E + Graph (soundhound2018_summer_qual_e)
原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-SoundHound-Inc-Programming-Contest-2018-E.html 题目 ...
- ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syria, Lattakia, Tishreen University, April, 30, 2018
ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syr ...
- German Collegiate Programming Contest 2018 B. Battle Royale
Battle Royale games are the current trend in video games and Gamers Concealed Punching Circles (GCPC ...
随机推荐
- simhash与重复信息识别
在工作学习中,我往往感叹数学奇迹般的解决一些貌似不可能完成的任务,并且十分希望将这种喜悦分享给大家,就好比说:“老婆,出来看上帝”…… 随着信息爆炸时代的来临,互联网上充斥着着大量的近重复信息,有效地 ...
- 安卓新的联网方式 Volley的使用(一)加载图片与 json
最近刚接触安卓, 以前搞wp ,一对比起来 ,安卓怎么这么麻烦.联网必须要重新开一个线程才可以.而且加载网络图片也很麻烦...花了很久一直卡在快速滑动加载网络图片的listview上面 ,一直很纠结痛 ...
- asp.net mvc 中使用 iframe 加载相应的静态html页面进行显示
<iframe src='<%=ResolveUrl("~/Content/HTML_file/Agreement.html")%>' <%@ Page ...
- AJPFX分享java排序之希尔排序
(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每 ...
- 状态模式和php实现
状态模式: 允许一个对象在其内部状态改变时改变它的行为,对象看起来似乎修改了它的类.其别名为状态对象(Objects for States),状态模式是一种对象行为型模式. 模式分析: 在很多情况下, ...
- SPOJ1716 GSS3(线段树)
题意 Sol 会了GSS1,GSS3就比较无脑了 直接加个单点修改即可,然后update一下 /* */ #include<cstdio> #include<cstring> ...
- js图片预加载以及延迟加载
当我们需要做图片轮播的时候,如果让图片提前下载到本地,用浏览器缓存起来,我们可以用Image对象: function preLoadImg(){ var img=new Image(); img.sr ...
- IT之家学院:使用CMD命令行满速下载百度云
转自:https://www.toutiao.com/a6545305189685920259/?tt_from=android_share&utm_campaign=client_share ...
- MD5 介绍
MD5(单向散列算法)的全称是Message-Digest Algorithm 5(信息-摘要算法),经MD2.MD3和MD4发展而来.MD5算法的使用不需要支付任何版权费用. MD5功能: 输入任意 ...
- [windows]命令行关机或重启电脑
1.关机:菜单--〉运行--〉输入:cmd--〉输入:shutdown -s -t 0 2.重启:菜单--〉运行--〉输入:cmd--〉输入:shutdown -r -t 0 (注:“-r”代表重启, ...