Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。

Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下

Scrapy主要包括了以下组件:

    • 引擎(Scrapy)
      用来处理整个系统的数据流, 触发事务(框架核心)
    • 调度器(Scheduler)
      用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
    • 下载器(Downloader)
      用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
    • 爬虫(Spiders)
      爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
    • 项目管道(Pipeline)
      负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
    • 下载器中间件(Downloader Middlewares)
      位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
    • 爬虫中间件(Spider Middlewares)
      介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
    • 调度中间件(Scheduler Middewares)
      介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

Scrapy运行流程大概如下:

  1. 引擎从调度器中取出一个链接(URL)用于接下来的抓取
  2. 引擎把URL封装成一个请求(Request)传给下载器
  3. 下载器把资源下载下来,并封装成应答包(Response)
  4. 爬虫解析Response
  5. 解析出实体(Item),则交给实体管道进行进一步的处理
  6. 解析出的是链接(URL),则把URL交给调度器等待抓取

一、安装


 Linux:

      pip3 install scrapy

Windows:   
  1、安装wheel
pip install wheel
、安装Twisted
https://www.lfd.uci.edu/~gohlke/pythonlibs/   

      pip install Twisted-18.9.0-cp36-cp36m-win_amd64.whl

    、安装pywin32
https://sourceforge.net/projects/pywin32/files/

    、安装scrapy
pip install scrapy

注:windows平台需要依赖pywin32,请根据自己系统32/64位选择下载安装,https://sourceforge.net/projects/pywin32/

二、爬虫举例

入门篇:美剧天堂前100最新(http://www.meijutt.com/new100.html)

1、创建工程

scrapy startproject movie

2、创建爬虫程序

cd movie
scrapy genspider meiju meijutt.com

3、自动创建目录及文件

4、文件说明:

  • scrapy.cfg  项目的配置信息,主要为Scrapy命令行工具提供一个基础的配置信息。(真正爬虫相关的配置信息在settings.py文件中)
  • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
  • pipelines    数据处理行为,如:一般结构化的数据持久化
  • settings.py 配置文件,如:递归的层数、并发数,延迟下载等
  • spiders      爬虫目录,如:创建文件,编写爬虫规则

注意:一般创建爬虫文件时,以网站域名命名

5、设置数据存储模板

  items.py

import scrapy

class MovieItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
name = scrapy.Field()

6、编写爬虫

  meiju.py

# -*- coding: utf-8 -*-
import scrapy
from movie.items import MovieItem class MeijuSpider(scrapy.Spider):
name = "meiju"
allowed_domains = ["meijutt.com"]
start_urls = ['http://www.meijutt.com/new100.html'] def parse(self, response):
movies = response.xpath('//ul[@class="top-list fn-clear"]/li')
for each_movie in movies:
item = MovieItem()
item['name'] = each_movie.xpath('./h5/a/@title').extract()[0]
yield item

7、设置配置文件

  settings.py增加如下内容

ITEM_PIPELINES = {'movie.pipelines.MoviePipeline':100}

8、编写数据处理脚本

  pipelines.py

class MoviePipeline(object):
def process_item(self, item, spider):
with open("my_meiju.txt",'a') as fp:
fp.write(item['name'].encode("utf8") + '\n')

9、执行爬虫

cd movie
scrapy crawl meiju --nolog

10、结果

进阶篇:爬取校花网(http://www.xiaohuar.com/list-1-1.html)

1、创建一个工程

scrapy startproject pic

2、创建爬虫程序

cd pic
scrapy genspider xh xiaohuar.com

3、自动创建目录及文件

4、文件说明:

  • scrapy.cfg  项目的配置信息,主要为Scrapy命令行工具提供一个基础的配置信息。(真正爬虫相关的配置信息在settings.py文件中)
  • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
  • pipelines    数据处理行为,如:一般结构化的数据持久化
  • settings.py 配置文件,如:递归的层数、并发数,延迟下载等
  • spiders      爬虫目录,如:创建文件,编写爬虫规则

注意:一般创建爬虫文件时,以网站域名命名

5、设置数据存储模板

import scrapy

class PicItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
addr = scrapy.Field()
name = scrapy.Field()

6、编写爬虫

# -*- coding: utf-8 -*-
import scrapy
import os
# 导入item中结构化数据模板
from pic.items import PicItem class XhSpider(scrapy.Spider):
# 爬虫名称,唯一
name = "xh"
# 允许访问的域
allowed_domains = ["xiaohuar.com"]
# 初始URL
start_urls = ['http://www.xiaohuar.com/list-1-1.html'] def parse(self, response):
# 获取所有图片的a标签
allPics = response.xpath('//div[@class="img"]/a')
for pic in allPics:
# 分别处理每个图片,取出名称及地址
item = PicItem()
name = pic.xpath('./img/@alt').extract()[0]
addr = pic.xpath('./img/@src').extract()[0]
addr = 'http://www.xiaohuar.com'+addr
item['name'] = name
item['addr'] = addr
# 返回爬取到的数据
yield item

7、设置配置文件

# 设置处理返回数据的类及执行优先级
ITEM_PIPELINES = {'pic.pipelines.PicPipeline':100}

8、编写数据处理脚本

import urllib2
import os class PicPipeline(object):
def process_item(self, item, spider):
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:52.0) Gecko/20100101 Firefox/52.0'}
req = urllib2.Request(url=item['addr'],headers=headers)
res = urllib2.urlopen(req)
file_name = os.path.join(r'D:\my\down_pic',item['name']+'.jpg')
with open(file_name,'wb') as fp:
fp.write(res.read())

9、执行爬虫

cd pic
scrapy crawl xh --nolog

结果:

终极篇:我想要所有校花图

注明:基于进阶篇再修改为终极篇

#  xh.py

# -*- coding: utf-8 -*-
import scrapy
import os
from scrapy.http import Request # 导入item中结构化数据模板
from pic.items import PicItem class XhSpider(scrapy.Spider):
# 爬虫名称,唯一
name = "xh"
# 允许访问的域
allowed_domains = ["xiaohuar.com"]
# 初始URL
start_urls = ['http://www.xiaohuar.com/hua/']
# 设置一个空集合
url_set = set() def parse(self, response):
# 如果图片地址以http://www.xiaohuar.com/list-开头,我才取其名字及地址信息
if response.url.startswith("http://www.xiaohuar.com/list-"):
allPics = response.xpath('//div[@class="img"]/a')
for pic in allPics:
# 分别处理每个图片,取出名称及地址
item = PicItem()
name = pic.xpath('./img/@alt').extract()[0]
addr = pic.xpath('./img/@src').extract()[0]
addr = 'http://www.xiaohuar.com'+addr
item['name'] = name
item['addr'] = addr
# 返回爬取到的信息
yield item
# 获取所有的地址链接
urls = response.xpath("//a/@href").extract()
for url in urls:
# 如果地址以http://www.xiaohuar.com/list-开头且不在集合中,则获取其信息
if url.startswith("http://www.xiaohuar.com/list-"):
if url in XhSpider.url_set:
pass
else:
XhSpider.url_set.add(url)
# 回调函数默认为parse,也可以通过from scrapy.http import Request来指定回调函数
# from scrapy.http import Request
# Request(url,callback=self.parse)
yield self.make_requests_from_url(url)
else:
pass
 
 
 

10,Scrapy简单入门及实例讲解的更多相关文章

  1. [转]Scrapy简单入门及实例讲解

    Scrapy简单入门及实例讲解 中文文档:   http://scrapy-chs.readthedocs.io/zh_CN/0.24/ Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用 ...

  2. Scrapy简单入门及实例讲解

    Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中.其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以 ...

  3. Scrapy简单入门及实例讲解-转载

    Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中.其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以 ...

  4. 【智能算法】粒子群算法(Particle Swarm Optimization)超详细解析+入门代码实例讲解

    喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 01 算法起源 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由E ...

  5. TCP入门与实例讲解

    内容简介 TCP是TCP/IP协议栈的核心组成之一,对开发者来说,学习.掌握TCP非常重要. 本文主要内容包括:什么是TCP,为什么要学习TCP,TCP协议格式,通过实例讲解TCP的生命周期(建立连接 ...

  6. Nodejs进阶:核心模块net入门与实例讲解

    模块概览 net模块是同样是nodejs的核心模块.在http模块概览里提到,http.Server继承了net.Server,此外,http客户端与http服务端的通信均依赖于socket(net. ...

  7. PHP中“简单工厂模式”实例讲解

    原创文章,转载请注明出处:http://www.cnblogs.com/hongfei/archive/2012/07/07/2580776.html 简单工厂模式:①抽象基类:类中定义抽象一些方法, ...

  8. scrapy简单入门及选择器(xpath\css)

    简介 scrapy被认为是比较简单的爬虫框架,资料比较齐全,网上也有很多教程.官网上介绍了它的四种安装方法,PyPI.Conda.APT.Source,我们只介绍最简单的安装方法. 安装 Window ...

  9. wxPython中文教程 简单入门加实例

    wx.Window 是一个基类,许多构件从它继承.包括 wx.Frame 构件.技术上这意味着,我们可以在所有的 子类中使用 wx.Window 的方法.我们这里介绍它的几种方法: * SetTitl ...

随机推荐

  1. Department Highest Salary

    The Employee table holds all employees. Every employee has an Id, a salary, and there is also a colu ...

  2. 在java.ext.dirs中使用环境变量导致crontab执行不成功的问题及解决

    在java.ext.dirs中使用环境变量导致crontab执行不成功的问题及解决 Table of Contents 1. java.ext.dirs的使用和环境变量 2. 问题:在crontab中 ...

  3. kickstart2019 round_A B. Parcels

    思路: 利用了曼哈顿距离和切比雪夫距离之间的转化. 参考: https://blog.csdn.net/Dylan_Frank/article/details/88985444 https://www ...

  4. img IE下支持最大宽度

    border:0 none; max-width: 560px; height:auto; width:expression(this.width > 600 ? "600px&quo ...

  5. #include< >和#include“ ”的区别

    < >引用的是编译器的类库路径里面的头文件 " "引用的是你程序目录的相对路径中的头文件 假如你编译器定义的自带头文件引用在C:\Keil\c51\INC\下面 则#i ...

  6. python基础-数据运算

             *按位取反运算规则(按位取反再加1)   详解http://blog.csdn.net/wenxinwukui234/article/details/42119265  详细内容ht ...

  7. 绿盟堡垒机云服务(vSAS-H)

    绿盟堡垒机云服务(vSAS-H) 平台: linux 类型: 虚拟机镜像 软件包: basic software devops nsfocus security 堡垒机 服务优惠价: 按服务商许可协议 ...

  8. 理顺react,flux,redux这些概念的关系

    作者:北溟小鱼hk链接:https://www.zhihu.com/question/47686258/answer/107209140来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转 ...

  9. web跨域及cookie相关知识总结

    原文:web跨域及cookie相关知识总结   之前对于跨域相关的知识一致都很零碎,正好现在的代码中用到了跨域相关的,现在来对这些知识做一个汇总整理,方便自己查看,说不定也可能对你有所帮助. 本篇主要 ...

  10. React后台管理系统- rc-pagination分页组件封装

    1.用户列表页面使用的rc-pagination分页组件 Github地址: https://github.com/react-component/pagination 2.安装 cnpm insta ...