HDU2243 考研路茫茫——单词情结 ——AC自动机、矩阵优化
题目链接:https://vjudge.net/problem/HDU-2243
考研路茫茫——单词情结
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6445 Accepted Submission(s): 2212
一天,Lele在某本单词书上看到了一个根据词根来背单词的方法。比如"ab",放在单词前一般表示"相反,变坏,离去"等。
于是Lele想,如果背了N个词根,那这些词根到底会不会在单词里出现呢。更确切的描述是:长度不超过L,只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个呢?这里就不考虑单词是否有实际意义。
比如一共有2个词根 aa 和 ab ,则可能存在104个长度不超过3的单词,分别为
(2个) aa,ab,
(26个)aaa,aab,aac...aaz,
(26个)aba,abb,abc...abz,
(25个)baa,caa,daa...zaa,
(25个)bab,cab,dab...zab。
这个只是很小的情况。而对于其他复杂点的情况,Lele实在是数不出来了,现在就请你帮帮他。
每组数据占两行。
第一行有两个正整数N和L。(0<N<6,0<L<2^31)
第二行有N个词根,每个词根仅由小写字母组成,长度不超过5。两个词根中间用一个空格分隔开。
由于结果可能非常巨大,你只需要输出单词总数模2^64的值。
aa ab
1 2
a
52
题意:
给出m个单词,问长度不超过n且至少含有1个单词(可重叠)的字符串有多少个?
题解:
1.由于求“>=1”,那么可以先求出“<1”,即“=0”的有多少个,然后再用总的减去,得到答案。
2.“=0”,即不含有任何一个单词,详情请看:POJ2278 DNA Sequence 。
3. 由于长度<=n,那么我们要求 A^1 + A^2 + …… + A^n,其中A是初步得到的矩阵,怎么求?UVA11149 Power of Matrix 。
4. 最后用总的(26+26^2+……+26^n)减去不含单词的(A^1 + A^2 + …… + A^n 的初始状态那一行之和),即为答案。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef unsigned long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = +; int Size;
struct MA
{
LL mat[][];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA operator+(const MA &x, const MA &y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
ret.mat[i][j] = x.mat[i][j]+y.mat[i][j];
return ret;
} MA operator*(const MA &x, const MA &y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += 1LL*x.mat[i][k]*y.mat[k][j];
return ret;
} MA qpow(MA x, int y)
{
MA s;
s.init();
while(y)
{
if(y&) s = s*x;
x = x*x;
y >>= ;
}
return s;
} MA solve(MA x, int n)
{
if(n==) return x;
MA s;
s.init();
s = (s+qpow(x,n/))*solve(x, n/);
if(n%) s = s+qpow(x, n);
return s;
} struct Trie
{
const static int sz = , base = 'a';
int next[MAXN][sz], fail[MAXN], end[MAXN];
int root, L;
int newnode()
{
for(int i = ; i<sz; i++)
next[L][i] = -;
end[L++] = ;
return L-;
}
void init()
{
L = ;
root = newnode();
}
void insert(char buf[])
{
int len = strlen(buf);
int now = root;
for(int i = ; i<len; i++)
{
if(next[now][buf[i]-base] == -) next[now][buf[i]-base] = newnode();
now = next[now][buf[i]-base];
}
end[now] = ;
}
void build()
{
queue<int>Q;
fail[root] = root;
for(int i = ; i<sz; i++)
{
if(next[root][i] == -) next[root][i] = root;
else fail[next[root][i]] = root, Q.push(next[root][i]);
}
while(!Q.empty())
{
int now = Q.front();
Q.pop();
end[now] |= end[fail[now]]; //当前串的后缀是否也包含单词
for(int i = ; i<sz; i++)
{
if(next[now][i] == -) next[now][i] = next[fail[now]][i];
else fail[next[now][i]] = next[fail[now]][i], Q.push(next[now][i]);
}
}
} LL query(int n)
{
MA s;
memset(s.mat, , sizeof(s.mat));
for(int i = ; i<L; i++)
{
if(end[i]) continue; //存在单词的状态没有后继
for(int j = ; j<sz; j++)
if(end[next[i][j]]==) //存在单词的状态没有前驱
s.mat[i][next[i][j]]++; // i到next[i][j]的路径数+1。注意,当next[i][j]==root时,路径数很可能大于1。
} Size = L;
s = solve(s, n);
LL ret = ;
for(int i = ; i<L; i++) //答案为:初始状态到各个状态(包括初始状态)的路径数之和。
ret += s.mat[][i];
Size = ;
memset(s.mat,,sizeof(s.mat)); //26+26^2……+26^n。
s.mat[][] = ;
s = solve(s, n);
return s.mat[][]-ret;
}
}; Trie ac;
char buf[];
int main()
{
int n, L;
while(scanf("%d%d", &n,&L)!=EOF)
{
ac.init();
for(int i = ; i<=n; i++)
{
scanf("%s", buf);
ac.insert(buf);
}
ac.build();
LL ans = ac.query(L);
printf("%llu\n", ans);
}
return ;
}
HDU2243 考研路茫茫——单词情结 ——AC自动机、矩阵优化的更多相关文章
- [hdu2243]考研路茫茫——单词情结(AC自动机+矩阵快速幂)
题意:长度不超过L,只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个. 解题关键:利用补集转化的思想,先求一个词根也不包含的单词个数,然后用总的减去即可.长度不超过L需要用矩阵维数增加一倍 ...
- hdu_2243_考研路茫茫——单词情结(AC自动机+矩阵)
题目链接:hdu_2243_考研路茫茫——单词情结 题意: 让你求包含这些模式串并且长度不小于L的单词种类 题解: 这题是poj2788的升级版,没做过的强烈建议先做那题. 我们用poj2778的方法 ...
- hdu 2243 考研路茫茫——单词情结 AC自动机 矩阵幂次求和
题目链接 题意 给定\(N\)个词根,每个长度不超过\(5\). 问长度不超过\(L(L\lt 2^{31})\),只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个? 思路 状态(AC自动 ...
- HDU-2243 考研路茫茫——单词情结(AC自动机)
题目大意:给n个单词,长度不超过L的单词有多少个包含n个单词中的至少一个单词. 题目分析:用长度不超过L的单词书目减去长度在L之内所有不包含任何一个单词的书目. 代码如下: # include< ...
- hdu 2243 考研路茫茫——单词情结 ac自动机+矩阵快速幂
链接:http://acm.hdu.edu.cn/showproblem.php?pid=2243 题意:给定N(1<= N < 6)个长度不超过5的词根,问长度不超过L(L <23 ...
- hdu 2243 考研路茫茫——单词情结(AC自动+矩阵)
考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- HDU 2243 考研路茫茫——单词情结(AC自动机+DP+快速幂)
题目链接 错的上头了... 这题是DNA的加强版,26^1 +26^2... - A^1-A^2... 先去学了矩阵的等比数列求和,学的是第二种方法,扩大矩阵的方法.剩下就是各种模板,各种套. #in ...
- hdu2243 考研路茫茫——单词情结【AC自动机】【矩阵快速幂】
考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- HDU2243 考研路茫茫——单词情结(AC自动机+矩阵快速幂)
与POJ2778一样.这题是求长度不超过n且包含至少一个词根的单词总数. 长度不超过n的单词总数记为Sn,长度不超过n不包含词根的单词总数记为Tn. 答案就是,Sn-Tn. Sn=26+262+263 ...
随机推荐
- 【魅族Pro7】——BootStrap/JQuery/Canvas/PHP/MySQL/Ajax爬坑之项目总结
前言:这个项目是我们小组团体合作完成的学习项目,项目使用魅族GUI设计和图片素材,响应式重构Pro7官网的首页.子页.商城及购物车,并加入一些创新.我主要负责的是[画屏子页]的项目,这里作为温故知新, ...
- 【Salvation】——人物角色动画实现
写在前面:这个角色动画主要使用JavaScript编写脚本,在Unity3D游戏引擎的环境中实现. 一.显示角色并实现镜像效果 1.显示贴图: create→cube→修改名称为player,位置归0 ...
- git-for-windows 安装无图标的问题
git-for-windows.ico 安装无图标的问题 一. 问题表现: 桌面图标与右建菜单图标,所是未知文件的图标, 二. 问题解决: 在shard/git/ copy 一个ico 文件(如git ...
- js 淘宝评分
<!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...
- AAuto无法关闭CMD窗口怎么办
如下图所示,当执行了io.print函数之后,打开的CMD窗口无法使用关闭按钮关闭,其实只要点击左上角的控制台,把钩去掉,该窗口即可关闭.
- linux 文件删除恢复extundelete
首先要把删除文件所有磁盘分区卸载掉 然后安装yum install -y extundelete *2fs* extundelete /dev/sdb1 --inode #查看sdb1分区下删除的文件 ...
- 【Python】存储数据
很多程序都要求用户输入某种信息,如让用户存储游戏首选项或者提供可视化数据,不管专注什么,程序都要将数据进行存储,那么如何存储呢? JSON(JavaScript Object Notation)格式最 ...
- Android开发第一讲之目录结构和程序的执行流程
1.如何在eclipse当中,修改字体 下面的这种办法,可以更改xml的字体 窗口--首选项--常规--外观--颜色和字体--基本--文本字体--编辑Window --> Preferences ...
- idea 的IDE
idea 是与eclipse齐名的IDE(集成开发工具),以智能闻名,不过对于熟悉eclipse的的用户来说,初次接触idea有些让人搞不清方向,下面介绍一下简单的使用 方式. 1.安装 官网下载ul ...
- 在mac下搭建java开发环境
刚刚从windows系统转到使用mac系统.感觉不是特别熟悉,须要一定的适应时间. 以下简介一下mac下搭建主要的java开发环境. 1.安装jdk 安装jdk1.7后,发现不须要进行环境变量配置,直 ...