洛谷 2261 [CQOI2007]余数求和
一句话题意
求 \(\sum_{i=1}^{n} (k ~~\texttt{mod} ~~i)\)
Solution
30分做法:
说实话并不知道怎么办。
60分做法:
很明显直接一遍o(n)枚举 i 就可以求出。
100分做法:
对于每一个k mod i,我们知道k mod i = k-k/i*i,那么
\(\quad \sum_{i=1}^{n}{k \quad mod \quad i}=n*k-\sum_{i=1}^{n}(k/i*i)\)
所以这个题目就转化成了求 \(\sum_{i=1}^{n}(k/i*i)\)。
于是我们很敏锐地察觉到 k/i 貌似有点可操作性 (胡乱BB),因为我们发现对于一段区间的i,k/i 的值是一样的并且是连续的区间,例如:
100/25=100/24=100/23=100/22=100/21=4,因为这一段k/i的值都相等,那么可以一起计算,我们只需要运用等差数列求和公式求出21到25之和,再乘上4便是要求的值。
那么我们定义一个L和R,表示k/i的值相等的区间的两个端点。
首先我们可以知道L=上一次的R+1(区间都是连续的)。
因为L是当前区间中i的最小值,那么最大值就是k/(k/i)。
打个比方:21是100/i=4中最小的i,那么此区间中最大的就是100/4=25。
那么思路就很明显了:
首先Ans=n×k,再减去\(\sum_{i=1}^{n}(k/i*i)\)。
对于公式\(\sum_{i=1}^{n}(k/i*i)\):
初始值L=1,R=0,然后L=上一个R+1,R=k/(k/L)。
每次Ans-=(k/L)×(R-L+1)×(L+R)/2(等差数列求和,应该都懂)。
直到R=n即可,注意R=min(k/(k/L),n),以防越界。
时间复杂度 巨说是\(o(\sqrt{n})\)。
Ps:要开long long!!!!
Coding
60分代码
#include <bits/stdc++.h>
using namespace std;
_int main()
{
long long n,k,ans=0;
cin>>n>>k;
for (long long i=1;i<=n;++i)
ans+=(k%i);
cout<<ans;
return 0;
}
100分代码
#include<bits/stdc++.h>
using namespace std;
int main()
{
long long l,r,n,k,ans;
cin>>n>>k;
ans=n*k;
l=1;
r=0;
while(r<n)
{
if(k/l!=0) r=min(k/(k/l),n);
else r=n;
ans-=(k/l)*(r-l+1)*(l+r)/2;
l=r+1;
}
cout<<ans;
return 0;
}
传说中的极简AC不易懂,233.
洛谷 2261 [CQOI2007]余数求和的更多相关文章
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- 洛谷 P2261 [CQOI2007]余数求和
洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块
参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...
- [Luogu 2261] CQOI2007 余数求和
[Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...
- 【洛谷P2261】余数求和
题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
随机推荐
- hdu1061(C++)
简单的找规律,不妨设N=10*x+a(a=N%10),那么N^N=(10*x+a)^N,用二项式展开定理可以知道N^N%10=a^N%10; 由于0<a<10,打表a^1,a^2,a^3, ...
- OpenSceneGraph 3.2 版本修改点
OpenSceneGraph-3.2.0稳定版本发布了,改善了对iOS.Android的支持,支持OpenGL的更多新特性.可以通过 下载版块来进行下载. OpenSceneGraph 3.2 发布. ...
- 国家商用password(五)基于SM2的软件授权码生成及校验
将公开密钥算法作为软件注冊算法的优点是Cracker非常难通过跟踪验证算法得到注冊机.以下.将介绍使用SM2国密算法进行软件注冊的方法. 生成授权码 选择SM2椭圆曲线參数(P,a,b,N,Gx,Gy ...
- git pull“No remote repository specified”解决方法
git pull“No remote repository specified”解决方法 学习了:http://www.paopaoche.net/jiaocheng/77226.html 修改“.g ...
- Java常见问题分析(内存溢出、内存泄露、线程阻塞等)
Java垃圾回收机制(GC) 1.1 GC机制作用 1.2 堆内存3代分布(年轻代.老年代.持久代) 1.3 GC分类 1.4 GC过程 Java应用内存问题分析 2.1 Java内存划分 2.2 J ...
- jquery ajax传参数问题
var fd = new FormData();//实例化表单,提交数据使用fd.append('imgUrl',imgUrl);//将files追加进去fd.append('typeId',type ...
- poj1270Following Orders(拓扑排序+dfs回溯)
题目链接: 啊哈哈.点我点我 题意是: 第一列给出全部的字母数,第二列给出一些先后顺序. 然后按字典序最小的方式输出全部的可能性.. . 思路: 整体来说是拓扑排序.可是又非常多细节要考虑.首先要按字 ...
- UNP学习笔记(第三十章 客户/服务器程序设计范式)
TCP测试用客户程序 #include "unp.h" #define MAXN 16384 /* max # bytes to request from server */ in ...
- Theano学习笔记(四)——导数
导数使用T.grad计算. 这里使用pp()打印梯度的符号表达式. 第3行输出是打印了经过优化器简化的符号梯度表达式,与第1个输出相比确实简单多了. fill((x** TensorConstant{ ...
- Socket概述及TCP/IP的C++实现
网络通信实际是应用进程之间的通信,而要完整的描述一个应用进程在网络中的位置必须用 IP+端口: Socket就是一种在网络中进行数据通信的一种抽象描述.它是一种协议,本地地址,本地端口的抽象. Soc ...