题目戳这里

一句话题意

求 \(\sum_{i=1}^{n} (k ~~\texttt{mod} ~~i)\)

Solution

30分做法:

说实话并不知道怎么办。

60分做法:

很明显直接一遍o(n)枚举 i 就可以求出。

100分做法:

对于每一个k mod i,我们知道k mod i = k-k/i*i,那么

\(\quad \sum_{i=1}^{n}{k \quad mod \quad i}=n*k-\sum_{i=1}^{n}(k/i*i)\)

所以这个题目就转化成了求 \(\sum_{i=1}^{n}(k/i*i)\)。

于是我们很敏锐地察觉到 k/i 貌似有点可操作性 (胡乱BB),因为我们发现对于一段区间的i,k/i 的值是一样的并且是连续的区间,例如:

100/25=100/24=100/23=100/22=100/21=4,因为这一段k/i的值都相等,那么可以一起计算,我们只需要运用等差数列求和公式求出21到25之和,再乘上4便是要求的值。

那么我们定义一个L和R,表示k/i的值相等的区间的两个端点。

首先我们可以知道L=上一次的R+1(区间都是连续的)。

因为L是当前区间中i的最小值,那么最大值就是k/(k/i)。

打个比方:21是100/i=4中最小的i,那么此区间中最大的就是100/4=25。

那么思路就很明显了:

首先Ans=n×k,再减去\(\sum_{i=1}^{n}(k/i*i)\)。

对于公式\(\sum_{i=1}^{n}(k/i*i)\):

初始值L=1,R=0,然后L=上一个R+1,R=k/(k/L)。

每次Ans-=(k/L)×(R-L+1)×(L+R)/2(等差数列求和,应该都懂)。

直到R=n即可,注意R=min(k/(k/L),n),以防越界。

时间复杂度 巨说是\(o(\sqrt{n})\)。

Ps:要开long long!!!!

Coding

60分代码

#include <bits/stdc++.h>
using namespace std;
_int main()
{
long long n,k,ans=0;
cin>>n>>k;
for (long long i=1;i<=n;++i)
ans+=(k%i);
cout<<ans;
return 0;
}

100分代码

#include<bits/stdc++.h>
using namespace std;
int main()
{
long long l,r,n,k,ans;
cin>>n>>k;
ans=n*k;
l=1;
r=0;
while(r<n)
{
if(k/l!=0) r=min(k/(k/l),n);
else r=n;
ans-=(k/l)*(r-l+1)*(l+r)/2;
l=r+1;
}
cout<<ans;
return 0;
}

传说中的极简AC不易懂,233.

洛谷 2261 [CQOI2007]余数求和的更多相关文章

  1. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  2. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  3. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  4. 洛谷 P2261 [CQOI2007]余数求和

    洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...

  5. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  6. 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块

    参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...

  7. [Luogu 2261] CQOI2007 余数求和

    [Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...

  8. 【洛谷P2261】余数求和

    题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...

  9. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

随机推荐

  1. UICollectionView专题

    什么是UICollectionView UICollectionView是一种新的数据展示方式,简单来说可以把他理解成多列的UITableView(请一定注意这是UICollectionView的最最 ...

  2. 基于django的网站开发一基础项目配置

    首先确认电脑上已经安装好了python和django,我的python版本是2.7.13,django版本是1.10.2.数据库我使用的是mysql,版本是5.7.17,我是windows7系统,用的 ...

  3. 下载SCI论文

    今天帮汪博下了一下午SCI论文,见到了很多不知道的网站.顺便了解了一下: 首先进学校图书馆的网站,然后选择    WOS核心合集(含SCIE.SSCI.A&HCI.CPCI数据库) ---&g ...

  4. linux下怎样对串口编程

    Linux操作系统从一開始就对串行口提供了非常好的支持,本文就Linux下的串行口通讯编程进行简单的介绍. 串口简单介绍串行口是计算机一种经常使用的接口.具有连接线少.通讯简单.得到广泛的使用. 经常 ...

  5. django orm高级查询 F表达式和Q表达式以及分组annotate

    1.关联关系映射及查询1.1django默认开启延迟加载所有多对1和1对1如果不使用select_related(),需要会延迟加载获取到相关对象,因为延迟可能会造成n+1次查询的问题,所以便有了se ...

  6. 我如何添加一个空目录到Git仓库?

    新建了一个仓库,只是创建一些目录结构,还不里面放什么,要放的内容还没有,还不存在,应该怎么办呢? Git 是不跟踪空目录的,所以需要跟踪那么就需要添加文件! 也就是说 Git 中不存在真正意义上的空目 ...

  7. layui.layer独立组件--解释

    网站文档-链接:http://www.layui.com/doc/modules/layer.html layer至今仍作为layui的代表作,她的受众广泛并非偶然,而是这五年多的坚持,不断完善和维护 ...

  8. mycat可以干什么

     单纯的读写分离,此时配置最为简单,支持读写分离,主从切换 分表分库,对于超过 1000 万的表进行分片,最大支持 1000 亿的单表分片 多租户应用,每个应用一个库,但应用程序只连接 Myca ...

  9. HDU BestCoder Round #1 1002 项目管理

    项目管理 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  10. 开发ActiveX控件调用另一个ActiveX系列1——开发一个MFC ActiveX控件

    ActiveX开发的教程有很多,我也从中受益匪浅,例如以下这几篇: 基本教程:http://www.cnblogs.com/guenli/articles/1629915.html 注意事项:http ...