945. Minimum Increment to Make Array Unique

Given an array of integers A, a move consists of choosing any A[i], and incrementing it by 1.

Return the least number of moves to make every value in A unique.

Example 1:

Input: [1,2,2]
Output: 1
Explanation: After 1 move, the array could be [1, 2, 3].

Example 2:

Input: [3,2,1,2,1,7]
Output: 6
Explanation: After 6 moves, the array could be [3, 4, 1, 2, 5, 7].
It can be shown with 5 or less moves that it is impossible for the array to have all unique values.

Note:

  1. 0 <= A.length <= 40000
  2. 0 <= A[i] < 40000
 

Approach #1:

class Solution {
public:
int minIncrementForUnique(vector<int>& A) {
sort(A.begin(), A.end());
int move = 0;
for (int i = 1; i < A.size(); ++i) {
if (A[i] <= A[i-1]) {
int step= A[i] == A[i-1] ? 1 : A[i-1]+1-A[i];
A[i] += step;
move += step;
}
}
return move;
}
};

  

946. Validate Stack Sequences

Given two sequences pushed and popped with distinct values, return true if and only if this could have been the result of a sequence of push and pop operations on an initially empty stack.

Example 1:

Input: pushed = [1,2,3,4,5], popped = [4,5,3,2,1]
Output: true
Explanation: We might do the following sequence:
push(1), push(2), push(3), push(4), pop() -> 4,
push(5), pop() -> 5, pop() -> 3, pop() -> 2, pop() -> 1

Example 2:

Input: pushed = [1,2,3,4,5], popped = [4,3,5,1,2]
Output: false
Explanation: 1 cannot be popped before 2.

Note:

  1. 0 <= pushed.length == popped.length <= 1000
  2. 0 <= pushed[i], popped[i] < 1000
  3. pushed is a permutation of popped.
  4. pushed and popped have distinct values.

Approach #1:

class Solution {
public:
bool validateStackSequences(vector<int>& pushed, vector<int>& popped) {
stack<int> ipush;
queue<int> ipop;
for (int i = 0; i < popped.size(); ++i)
ipop.push(popped[i]);
for (int i = 0; i < pushed.size(); ++i) {
ipush.push(pushed[i]);
while (!ipush.empty() && ipush.top() == ipop.front()) {
ipush.pop();
ipop.pop();
}
}
return ipush.empty();
}
};

  

948. Bag of Tokens

You have an initial power P, an initial score of 0 points, and a bag of tokens.

Each token can be used at most once, has a value token[i], and has potentially two ways to use it.

  • If we have at least token[i] power, we may play the token face up, losing token[i] power, and gaining 1 point.
  • If we have at least 1 point, we may play the token face down, gaining token[i] power, and losing 1 point.

Return the largest number of points we can have after playing any number of tokens.

Example 1:

Input: tokens = [100], P = 50
Output: 0

Example 2:

Input: tokens = [100,200], P = 150
Output: 1

Example 3:

Input: tokens = [100,200,300,400], P = 200
Output: 2

Note:

  1. tokens.length <= 1000
  2. 0 <= tokens[i] < 10000
  3. 0 <= P < 10000

Approach #1:

class Solution {
public:
int bagOfTokensScore(vector<int>& tokens, int P) {
if (tokens.size() == 0) return 0;
sort(tokens.begin(), tokens.end());
if (P < tokens[0]) return 0;
int temp = 0, ans = 0;
int start = 0, end = tokens.size()-1;
while (start <= end && (temp > 0 || P >= tokens[ans])) {
if (P >= tokens[start]) {
P -= tokens[start];
temp++;
start++;
ans = max(ans, temp);
} else {
temp--;
P += tokens[end];
end--;
}
}
return ans;
}
};

  

947. Most Stones Removed with Same Row or Column

On a 2D plane, we place stones at some integer coordinate points.  Each coordinate point may have at most one stone.

Now, a move consists of removing a stone that shares a column or row with another stone on the grid.

What is the largest possible number of moves we can make?

Example 1:

Input: stones = [[0,0],[0,1],[1,0],[1,2],[2,1],[2,2]]
Output: 5

Example 2:

Input: stones = [[0,0],[0,2],[1,1],[2,0],[2,2]]
Output: 3

Example 3:

Input: stones = [[0,0]]
Output: 0

Note:

  1. 1 <= stones.length <= 1000
  2. 0 <= stones[i][j] < 10000
 Appraoch #1: C++ [grap coloring]
class Solution {
void color(vector<vector<int>> &G, vector<int> &C, int i, int c) {
C[i] = c;
for (int j : G[i]) {
if (C[j] == -1) color(G, C, j, c);
}
}
public:
int removeStones(vector<vector<int>> & stones) {
int N = stones.size();
vector<vector<int>> G(N);
for (int i = 0; i < N-1; i++) {
int x = stones[i][0];
int y = stones[i][1];
for (int j = i + 1; j < N; j++) {
if ((stones[j][0] == stones[i][0])||(stones[j][1] == stones[i][1])) {
G[i].push_back(j);
G[j].push_back(i);
}
}
}
vector<int> C(N, -1);
int c = 0;
for (int i = 0; i < N; i++) {
if (C[i] == -1) color(G, C, i, c++);
}
return N - c;
}
};

  

Approach #2: C++ [UnionFind]

class Solution {
public:
int removeStones(vector<vector<int>>& stones) {
for (int i = 0; i < stones.size(); ++i)
uni(stones[i][0], ~stones[i][1]);
return stones.size() - islands;
} unordered_map<int, int> f;
int islands = 0; int find(int x) {
if (!f.count(x)) f[x] = x, islands++;
if (x != f[x]) f[x] = find(f[x]);
return f[x];
} void uni(int x, int y) {
x = find(x), y = find(y);
if (x != y) f[x] = y, islands--;
} };

  

Approach #3: Python [DFS]

class Solution(object):
def removeStones(self, stones):
"""
:type stones: List[List[int]]
:rtype: int
"""
index = collections.defaultdict(set)
for i, j in stones:
index[i].add(j + 10000)
index[j+10000].add(i) def dfs(i):
seen.add(i)
for j in index[i]:
if j not in seen:
dfs(j) seen = set()
islands = 0 for i, j in stones:
if i not in seen:
islands += 1
dfs(i)
dfs(j + 10000) return len(stones) - islands

  

come from:

https://www.jianshu.com/p/30d2058db7f7

https://leetcode.com/problems/most-stones-removed-with-same-row-or-column/discuss/197659/C%2B%2B-solution-using-graph-coloring

Weekly Contest 112的更多相关文章

  1. LeetCode Weekly Contest 8

    LeetCode Weekly Contest 8 415. Add Strings User Accepted: 765 User Tried: 822 Total Accepted: 789 To ...

  2. Leetcode Weekly Contest 86

    Weekly Contest 86 A:840. 矩阵中的幻方 3 x 3 的幻方是一个填充有从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等. 给定一个 ...

  3. leetcode weekly contest 43

    leetcode weekly contest 43 leetcode649. Dota2 Senate leetcode649.Dota2 Senate 思路: 模拟规则round by round ...

  4. LeetCode Weekly Contest 23

    LeetCode Weekly Contest 23 1. Reverse String II Given a string and an integer k, you need to reverse ...

  5. LeetCode之Weekly Contest 91

    第一题:柠檬水找零 问题: 在柠檬水摊上,每一杯柠檬水的售价为 5 美元. 顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯. 每位顾客只买一杯柠檬水,然后向你付 5 美元.10  ...

  6. LeetCode Weekly Contest

    链接:https://leetcode.com/contest/leetcode-weekly-contest-33/ A.Longest Harmonious Subsequence 思路:hash ...

  7. LeetCode Weekly Contest 47

    闲着无聊参加了这个比赛,我刚加入战场的时候时间已经过了三分多钟,这个时候已经有20多个大佬做出了4分题,我一脸懵逼地打开第一道题 665. Non-decreasing Array My Submis ...

  8. 75th LeetCode Weekly Contest Champagne Tower

    We stack glasses in a pyramid, where the first row has 1 glass, the second row has 2 glasses, and so ...

  9. LeetCode之Weekly Contest 102

    第一题:905. 按奇偶校验排序数组 问题: 给定一个非负整数数组 A,返回一个由 A 的所有偶数元素组成的数组,后面跟 A 的所有奇数元素. 你可以返回满足此条件的任何数组作为答案. 示例: 输入: ...

随机推荐

  1. python网络爬虫之requests库 二

    前面一篇在介绍request登录CSDN网站的时候,是采用的固定cookie的方式,也就是先通过抓包的方式得到cookie值,然后将cookie值加在发送的数据包中发送到服务器进行认证. 就好比获取如 ...

  2. Map总结--HashMap/HashTable/TreeMap/WeakHashMap使用场景分析(转)

    首先看下Map的框架图 1.Map概述 1.Map是键值对映射的抽象接口 2.AbstractMap实现了Map中绝大部分的函数接口,它减少了“Map实现类”的重复编码 3.SortedMap有序的“ ...

  3. 【linux】在linux挂在windows共享目录

    mount -t cifs -o username=用户名,password='密码',vers=2.0 //windows共享目录 /linux挂载目录

  4. 协程与IO多路复用

    IO多路复用 I/O多路复用 : 通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作. Python Python中有一个select模块, ...

  5. leetcode 890. Possible Bipartition

    Given a set of N people (numbered 1, 2, ..., N), we would like to split everyone into two groups of ...

  6. HTTP 401.1 - 未授权:登录失败

    1 HTTP 401.1 - 未授权:登录失败 由于用户匿名访问使用的账号(默认是IUSR_机器名)被禁用,或者没有权限访问计算机,将造成用户无法访问.    解决方案: 1 打开IIS,右键站点,选 ...

  7. 1--单独使用jdbc开发问题总结

    1.数据库连接,使用时就创建,不使用立即释放,对数据库进行频繁连接开启和关闭,造成数据库资源浪费,影响 数据库性能. 设想:使用数据库连接池管理数据库连接. 2.将sql语句硬编码到java代码中,如 ...

  8. linux应用之bugfree的安装及配置

    Bugfree3.0.4 Linux环境安装指南 bugfree系统安装的前提是,配置LAMP环境(apache+mysql+php),下面以centos6.3系统为例介绍bugfree3.0.4的安 ...

  9. 反向ssh

    参考 https://www.thegeekstuff.com/2013/11/reverse-ssh-tunnel/ https://www.howtoforge.com/reverse-ssh-t ...

  10. UOJ_407_【IOI2018】狼人

    http://uoj.ac/problem/407 分析: 分别建立最小/最大kruskal重构树. 每次询问给出的两个点能走到的部分分别对应两棵树\(dfs\)序的一段区间. 转化成判断矩形中是否有 ...