●BZOJ 3622 已经没有什么好害怕的了
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=3622
题解:
容斥,dp
1).可以求出需要多少对"糖果>药片"(K对);
2).把两个数组A,B从小到大排序。
然后求出 nxt[i]表示 A[i]>B[nxt[i]] 且 nxt[i]为能取到的最大值
换句话说,nxt[i]表示有多少个 B的元素小于A[i]
3).定义 dp[i][k]表示前 i个A中有 k个选择了比它小的 B元素,其它的暂时不选 的方案数。
转移显然 dp[i][k]=dp[i-1][k](1)+dp[i-1][k-1]*(nxt[i]-(k-1))(2)
(1)式表示当前这个A元素暂时不选与它匹配的B元素。
(2)式表示当前这个A元素选择一个比它小的B元素与它匹配。
那么显然会有nxt[i]-(k-1)种选择。(应该懂了排序和求nxt[]的目的了吧)
求出了 dp[N][k]后,但是还有 (N-k)个元素没有匹配怎么办?
直接把 dp[N][k]*(N-k)! 表示剩下的元素随意匹配。
那么这时 dp[N][k]的含义即为:全部匹配后,至少有 k 对 "糖果>药片"的方案数(但是有重复的统计)。
然后为了求出恰好有 K 对 "糖果>药片"的方案数。就需要用到容斥:
4).容斥
不难发现,每个 dp[N][k+1]的方案在 dp[N][k]里出现了 C(k+1,k)次,
那么需要减去重复的。容斥系数如下:
dp[N][k] :1
dp[N][k+1] :-C(k+1,k)
dp[N][k+2] :+C(k+2,k)
...
dp[N][k+j] :(-1)^(j)*C(k+j,k)
诶,这个容斥系数怎么推出来的呢。看看这个题目的解法,一样的套路哦。
所以把那些东西加起来就是答案了。
另外,还可以更加直接暴力一点:
从后往前枚举 k,计算出 f[k],表示全部匹配后,恰好有 k 对 "糖果>药片"的方案数。
N
那么 f[k]=dp[N][k] - ( ∑ f[j]*C(j,k) ) , 即直接把多余的重复减去就好了。
j=k+1
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define _ %mod
#define MAXN 2500
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
const int mod=1000000009;
int dp[MAXN][MAXN],C[MAXN][MAXN],fac[MAXN],A[MAXN],B[MAXN],nxt[MAXN];
int N,K,ANS;
int main()
{
scanf("%d%d",&N,&K);
if((N+K)&1) return printf("0"),0;
else K=(N+K)/2; fac[0]=1;
for(int i=1;i<=N;i++) fac[i]=(1ll*fac[i-1]*i)_;
for(int i=0;i<=N;i++){
C[i][0]=1;
for(int j=1;j<=i;j++)
C[i][j]=(1ll*C[i-1][j-1]+C[i-1][j])_;
}
for(int i=1;i<=N;i++) scanf("%d",&A[i]);
for(int i=1;i<=N;i++) scanf("%d",&B[i]);
sort(A+1,A+N+1); sort(B+1,B+N+1); B[N+1]=0x3f3f3f3f;
for(int i=1,j=0;i<=N;i++){
while(B[j+1]<A[i]) j++; nxt[i]=j;
}
dp[0][0]=1;
for(int i=1;i<=N;i++){
dp[i][0]=dp[i-1][0];
for(int k=1;k<=i;k++)
dp[i][k]=(1ll*dp[i-1][k]+1ll*dp[i-1][k-1]*max(nxt[i]-k+1,0)_)_;
}
for(int i=K;i<=N;i++){
dp[N][i]=(1ll*dp[N][i]*fac[N-i])_;
ANS=(ANS+1ll*dp[N][i]*C[i][K]*(((i-K)&1)?-1:1)_+mod)_;
}
/*for(int i=N;i>=K;i--){
dp[N][i]=(1ll*dp[N][i]*fac[N-i])_;
for(int j=i+1;j<=N;j++)
dp[N][i]=(1ll*dp[N][i]-1ll*dp[N][j]*C[j][i]_+mod)_;
}*/
printf("%d",dp[N][K]);
return 0;
}
●BZOJ 3622 已经没有什么好害怕的了的更多相关文章
- BZOJ 3622: 已经没有什么好害怕的了 [容斥原理 DP]
3622: 已经没有什么好害怕的了 题意:和我签订契约,成为魔法少女吧 真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求 ...
- bzoj 3622 已经没有什么好害怕的了 类似容斥,dp
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1213 Solved: 576[Submit][Status][ ...
- BZOJ 3622 : 已经没有什么好害怕的了(dp + 广义容斥原理)
今天没听懂 h10 的讲课 但已经没有什么好害怕的了 题意 给你两个序列 \(a,b\) 每个序列共 \(n\) 个数 , 数之间两两不同 问 \(a\) 与 \(b\) 之间有多少配对方案 使得 \ ...
- [BZOJ 3622]已经没有什么好害怕的了
世萌萌王都拿到了,已经没有什么好害怕的了—— (作死) 笑看哪里都有学姐,真是不知说什么好喵~ 话说此题是不是输 0 能骗不少分啊,不然若学姐赢了,那么有头的学姐还能叫学姐吗? (作大死) 这 ...
- bzoj 3622 已经没有什么好害怕的了——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3622 令 f[i] 表示钦定 i 对 a[ ]>b[ ] 的关系的方案数:g[i] 表 ...
- 解题:BZOJ 3622 已经没有什么好害怕的了·
题面 用来学习二项式反演的题目 大于等于/小于等于 反演出 恰好等于 设前者为f(n),后者为g(n),则有$f(n)=\sum\limits_{i=0}^nC_n^ig(n)<->g(n ...
- BZOJ 3622: 已经没有什么好害怕的了(二项式反演)
传送门 解题思路 首先将\(a\),\(b\)排序,然后可以算出\(t(i)\),表示\(a(i)\)比多少个\(b(i)\)大,根据容斥套路,设\(f(k)\)表示恰好有\(k\)个\(a(i)\) ...
- 【BZOJ 3622】3622: 已经没有什么好害怕的了(DP+容斥原理)
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 683 Solved: 328 Description Input ...
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
随机推荐
- MySql数据库的常用命令
1.连接Mysql 连接本地的mysql数据库 : mysql -u root -p (回车之后会提示输入密码) 连接远程主机的mysql数据库 : 假设远程主机的IP为:110.110.1 ...
- LR回放https协议脚本失败: 错误 -27778: 在尝试与主机“www.baidu.com”connect 时发生 SSL 协议错误
今天用LR录制脚本协议为https协议,回放脚本时出现报错: Action.c(14): 错误 -27778: 在尝试与主机"www.baidu.com"connect 时发生 S ...
- linux系统命令学习系列-用户组管理
先复习一下上节内容: 设置密码命令passwd 用户信息修改命令usermod 用户删除命令userdel 作业:修改user1的用户id为505,家目录到admin,用户组为admin,最后删除us ...
- DES加密实现的思想及代码
感谢: http://blog.csdn.net/yxstars/article/details/38424021 上面的日志非常清晰的写出了这个DES加密的过程,主要存在初始IP置换,然后中间存在8 ...
- typescript简介
微软作为编译器狂魔一直有一个心病,就是改良JavaScript这种语法超级烂又很多人用的编程语言,于是TypeScript诞生了 先做个对比吧: TS JS 语法严谨性 严谨 宽松 静态性 静态 ...
- python3 常用模块
一.time与datetime模块 在Python中,通常有这几种方式来表示时间: 时间戳(timestamp):通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量.我们 ...
- Mybatis的原始dao开发方法
在进入主题之前先提一下sqlSession.sqlSession是一个面向用户(程序员)的接口. sqlSession中提供了很多操作数据库的方法,如: selectOne(返回单个对象).selec ...
- build.gradle & gradle.properties
一.build.gradle buildscript { ext { springBootVersion = '1.5.9.RELEASE' } repositories { maven { cred ...
- Oracle 用户创建及权限设置
1:创建临时表空间create temporary tablespace user_temp tempfile 'D:\app\Administrator\oradata\ORACLE\xyrj_t ...
- C#实现导出Excel
这段时间用到了导出Excel的功能,这个功能还是比较常用的,我常用的有两个方法,现在整理一下,方便以后查看. 一.实现DataTable数据导出到本地,需要自己传进去导出的路径. /// <su ...