BZOJ2820:YY的GCD
Sol
推导:\(n<m,p为质数\)
\(ans=\sum_p\sum_{i=1}^{\frac{n}{p}}\mu(i)\frac{n}{pi}\frac{m}{pi}\)
\(=\sum_{k=1}^{n}\frac{n}{k}\frac{m}{k}\sum_{p|k}\mu(\frac{k}{p})\)
\(\sum_{p|k}\mu(\frac{k}{p})\)可以暴力预处理,也可以在筛的时候计算出
暴力求
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Zsydalao 666
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e7 + 1);
IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
}
int prime[_], num, mu[_], f[_];
bool isprime[_];
IL void Prepare(){
isprime[1] = 1; mu[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]) prime[++num] = i, mu[i] = -1;
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]) mu[i * prime[j]] = -mu[i];
else{ mu[i * prime[j]] = 0; break; }
}
}
for(RG int i = 1; i < _; ++i)
for(RG int j = 1; j <= num && i * prime[j] < _; ++j)
f[i * prime[j]] += mu[i];
for(RG int i = 1; i < _; ++i) f[i] += f[i - 1];
}
int main(RG int argc, RG char *argv[]){
Prepare();
for(RG int T = Read(); T; --T){
RG ll n = Read(), m = Read(), ans = 0;
if(n > m) swap(n, m);
for(RG ll k = 1, j; k <= n; k = j + 1){
j = min(n / (n / k), m / (m / k));
ans += (n / k) * (m / k) * (f[j] - f[k - 1]);
}
printf("%lld\n", ans);
}
return 0;
}
筛的时候处理
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Zsydalao 666
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e7 + 1);
IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
}
int prime[_], num, mu[_], f[_];
bool isprime[_];
IL void Prepare(){
isprime[1] = 1; mu[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]) prime[++num] = i, mu[i] = -1, f[i] = 1;
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]) mu[i * prime[j]] = -mu[i], f[i * prime[j]] = mu[i] - f[i];
else{ mu[i * prime[j]] = 0; f[i * prime[j]] = mu[i]; break; }
}
}
for(RG int i = 1; i < _; ++i) f[i] += f[i - 1];
}
int main(RG int argc, RG char *argv[]){
Prepare();
for(RG int T = Read(); T; --T){
RG ll n = Read(), m = Read(), ans = 0;
if(n > m) swap(n, m);
for(RG ll k = 1, j; k <= n; k = j + 1){
j = min(n / (n / k), m / (m / k));
ans += (n / k) * (m / k) * (f[j] - f[k - 1]);
}
printf("%lld\n", ans);
}
return 0;
}
BZOJ2820:YY的GCD的更多相关文章
- [BZOJ2820]YY的GCD
[BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- BZOJ2820 YY的GCD 【莫比乌斯反演】
BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...
- BZOJ2820 YY的GCD 莫比乌斯+系数前缀和
/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...
- BZOJ2820:YY的GCD(莫比乌斯反演)
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- Bzoj-2820 YY的GCD Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...
- 【莫比乌斯反演】BZOJ2820 YY的GCD
Description 求有多少对(x,y)的gcd为素数,x<=n,y<=m.n,m<=1e7,T<=1e4. Solution 因为题目要求gcd为素数的,那么我们就只考虑 ...
- BZOJ2820: YY的GCD(反演)
题解 题意 题目链接 Sol 反演套路题.. 不多说了,就是先枚举一个质数,再枚举一个约数然后反演一下. 最后可以化成这样子 \[\sum_{i = 1}^n \frac{n}{k} \frac{n} ...
- 【反演复习计划】【bzoj2820】YY的GCD
这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去…… 原题意思是求以下式子:$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\ ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
随机推荐
- Pycharm 出现Unresolved reference '' 错误的解决方法
在用Pycharm做Pygame游戏小实战的时候碰到一个很无语的问题 如下 什么鬼?????? 我明明有写settings模块啊 而且还是放在同一个目录下 然后Pycharm给我来了一个错误 而且在 ...
- sql server在一个字段相同值时,另一个字段结果拼接
如下字段红框里的信息都一样的,通过转换实现字段拼接 SELECT formmain_id,(SELECT field0040+';' FROM formson_5489 WHERE formmain_ ...
- mdb导入SqlServer
弄了一份医案数据库,打开一看...命名全中文,好吧,导入SQLServer走起 SQL: SELECT * INTO newtable FROM OPENDATASOURCE ('Microsoft. ...
- maven常用命令介绍
mvn 3.0.4 创建maven项目命令 mvn archetype:generate -DgroupId=damocles-autocredit -DartifactId=damocles ...
- poj 3278 简单BFS
题意:给定农夫和奶牛的初始位置,农夫可以当前位置+1.-1.*2三种移动方式,问最少需要多少分钟抓住奶牛 AC代码: #include<cstdio> #include<cstrin ...
- Machine Learning|Andrew Ng|Coursera 吴恩达机器学习笔记
Week1: Machine Learning: A computer program is said to learn from experience E with respect to some ...
- hive:框架理解
1. 什么是hive •Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能. •本质是将HQL转换为MapReduce程序 2. 为什么 ...
- 我的Java设计模式-建造者模式
在未上大学之前,一直有个梦想"I have a dream!",就是能成为一位汽车工程师,一直幻想着开着自己设计的汽车飞奔在公路上,迷倒了万千少女.咳咳~~虽然现在没实现我的dre ...
- 网络基础Cisco路由交换四
NAT及静态转换 概述(NAT:网络地址转化) 作用: 通过将内部网络的私有ip地址翻译成全球唯一的公网ip地址, 使内部网络可以连接到互联网等外部网络上. NATA的特性 优点: 节省公有合法ip地 ...
- zabbix监控安装
1.关闭iptables和selinux # systemctl stop firewalld # systemctl disable firewalld # setenforce 2.安装yum源 ...