Description

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.
Consider the following algorithm:


		1. 		 input n

		2. 		 print n

		3. 		 if n = 1 then STOP

		4. 		 		 if n is odd then   n <-- 3n+1

		5. 		 		 else   n <-- n/2

		6. 		 GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed before the 1 is printed. For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.
(是i和j之间数的循环次数最大的)

#include<iostream>
using namespace std;
int bb(int i)
{ int count=1;
while(i!=1)
{
if(i%2==0)i/=2;
else i=i*3+1;
count ++; } return count; }
int main()
{ int a,b;
int q=0;
while(cin>>a>>b)
{
q++;
if(q>=10000)break;
int d=a>b?a:b;
int c=a<b?a:b;
int maxa=0;
for(int j=c;j<=d;j++)
{
int a1=bb(j);
if(maxa<a1)maxa=a1;
}
cout<<a<<" "<<b<<" "<<maxa<<endl; } return 0;
}

poj-1207 THE 3n+1 problem的更多相关文章

  1. OpenJudge/Poj 1207 The 3n + 1 problem

    1.链接地址: http://bailian.openjudge.cn/practice/1207/ http://poj.org/problem?id=1207 2.题目: 总时间限制: 1000m ...

  2. The 3n + 1 problem 分类: POJ 2015-06-12 17:50 11人阅读 评论(0) 收藏

    The 3n + 1 problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 53927   Accepted: 17 ...

  3. UVa 100 - The 3n + 1 problem(函数循环长度)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  4. 烟大 Contest1024 - 《挑战编程》第一章:入门 Problem A: The 3n + 1 problem(水题)

    Problem A: The 3n + 1 problem Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 14  Solved: 6[Submit][St ...

  5. uva----(100)The 3n + 1 problem

     The 3n + 1 problem  Background Problems in Computer Science are often classified as belonging to a ...

  6. 【转】UVa Problem 100 The 3n+1 problem (3n+1 问题)——(离线计算)

    // The 3n+1 problem (3n+1 问题) // PC/UVa IDs: 110101/100, Popularity: A, Success rate: low Level: 1 / ...

  7. 100-The 3n + 1 problem

    本文档下载 题目: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_pro ...

  8. PC/UVa 题号: 110101/100 The 3n+1 problem (3n+1 问题)

     The 3n + 1 problem  Background Problems in Computer Science are often classified as belonging to a ...

  9. UVA 100 - The 3n+1 problem (3n+1 问题)

    100 - The 3n+1 problem (3n+1 问题) /* * 100 - The 3n+1 problem (3n+1 问题) * 作者 仪冰 * QQ 974817955 * * [问 ...

  10. classnull100 - The 3n + 1 problem

    新手发帖,很多方面都是刚入门,有错误的地方请大家见谅,欢迎批评指正  The 3n + 1 problem  Background Problems in Computer Science are o ...

随机推荐

  1. 创建基于MailKit和MimeKit的.NET基础邮件服务

    邮件服务是一般的系统都会拥有和需要的功能,但是对于.NET项目来说,邮件服务的创建和使用会较为的麻烦..NET对于邮件功能提供了System.Net.Mail用于创建邮件服务,该基础服务提供邮件的基础 ...

  2. Centos7 上安装配置 RabbitMQ

    前言:  最近服务器上搭建了一下rabbitmq, 网上找了很多教程, 采了灰常灰常多的坑. 现在终于从坑里面爬出来了.赶紧写下来,避免下次掉坑里面   好了,废话不多说,下面步入正题 一.安装Erl ...

  3. 部署Java Web项目报错(一)

    今天,我在部署Java Web项目时,出现错误,并且在eclipse新建一个servers,却出现多个项目. 具体错误截图如下: 然后,我又将项目部署到JBoss服务器中,却还是运行不成功 22:12 ...

  4. C#:几种数据库的大数据批量插入

    在之前只知道SqlServer支持数据批量插入,殊不知道Oracle.SQLite和MySql也是支持的,不过Oracle需要使用Orace.DataAccess驱动,今天就贴出几种数据库的批量插入解 ...

  5. Vue项目搭建及原理三

    我每次写博客都要先在本地写一遍草稿,所以之前有些发布顺序可能会有一丢丢凌乱 哈哈哈,以后绝对改正,那下面我们就说一下创建及项目目录结构吧 三.创建项目 1.初始化Webpack p.p1 { marg ...

  6. R语言实现对基因组SNV进行注释

    很多时候,我们需要对取出的SNV进行注释,这个时候可能会在R上进行注释,通常注释文件都含有Chr(染色体).Start(开始位点).End(结束位点).Description(描述),而我们的SNV文 ...

  7. 使用AOP的好处

    原始代码的写法 既然要通过代码来演示,那必须要有例子,这里我的例子为: 有一个接口Dao有insert.delete.update三个方法,在insert与update被调用的前后,打印调用前的毫秒数 ...

  8. Python基础__字典、集合、运算符

    之前讨论的字符串.列表.元组都是有序对象,本节则重点讨论无序对象:字典与集合.一.字典 列表是Python中的有序集合,列表中的序指的是列表中的元素与自然数集形成了一个一一对应的关系.例如L=['I' ...

  9. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

  10. 【洛谷T7153】(考试) 中位数

    题目描述 给定 n 个数 a1, a2, ..., an,求这 n 个数两两的差值(共 n(n−1) 2 个)的中位数. 输入格式: 第一行一个正整数 n,表示数的个数. 接下来一行 n 个正整数,分 ...