Description

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.
Consider the following algorithm:


		1. 		 input n

		2. 		 print n

		3. 		 if n = 1 then STOP

		4. 		 		 if n is odd then   n <-- 3n+1

		5. 		 		 else   n <-- n/2

		6. 		 GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed before the 1 is printed. For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.
(是i和j之间数的循环次数最大的)

#include<iostream>
using namespace std;
int bb(int i)
{ int count=1;
while(i!=1)
{
if(i%2==0)i/=2;
else i=i*3+1;
count ++; } return count; }
int main()
{ int a,b;
int q=0;
while(cin>>a>>b)
{
q++;
if(q>=10000)break;
int d=a>b?a:b;
int c=a<b?a:b;
int maxa=0;
for(int j=c;j<=d;j++)
{
int a1=bb(j);
if(maxa<a1)maxa=a1;
}
cout<<a<<" "<<b<<" "<<maxa<<endl; } return 0;
}

poj-1207 THE 3n+1 problem的更多相关文章

  1. OpenJudge/Poj 1207 The 3n + 1 problem

    1.链接地址: http://bailian.openjudge.cn/practice/1207/ http://poj.org/problem?id=1207 2.题目: 总时间限制: 1000m ...

  2. The 3n + 1 problem 分类: POJ 2015-06-12 17:50 11人阅读 评论(0) 收藏

    The 3n + 1 problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 53927   Accepted: 17 ...

  3. UVa 100 - The 3n + 1 problem(函数循环长度)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  4. 烟大 Contest1024 - 《挑战编程》第一章:入门 Problem A: The 3n + 1 problem(水题)

    Problem A: The 3n + 1 problem Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 14  Solved: 6[Submit][St ...

  5. uva----(100)The 3n + 1 problem

     The 3n + 1 problem  Background Problems in Computer Science are often classified as belonging to a ...

  6. 【转】UVa Problem 100 The 3n+1 problem (3n+1 问题)——(离线计算)

    // The 3n+1 problem (3n+1 问题) // PC/UVa IDs: 110101/100, Popularity: A, Success rate: low Level: 1 / ...

  7. 100-The 3n + 1 problem

    本文档下载 题目: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_pro ...

  8. PC/UVa 题号: 110101/100 The 3n+1 problem (3n+1 问题)

     The 3n + 1 problem  Background Problems in Computer Science are often classified as belonging to a ...

  9. UVA 100 - The 3n+1 problem (3n+1 问题)

    100 - The 3n+1 problem (3n+1 问题) /* * 100 - The 3n+1 problem (3n+1 问题) * 作者 仪冰 * QQ 974817955 * * [问 ...

  10. classnull100 - The 3n + 1 problem

    新手发帖,很多方面都是刚入门,有错误的地方请大家见谅,欢迎批评指正  The 3n + 1 problem  Background Problems in Computer Science are o ...

随机推荐

  1. python每天一个小练习-列表元素非唯一

    列表元素非唯一 来源 checkio 需求 你将得到一个含有整数(X)的非空列表.在这个任务里,你应该返回在此列表中的非唯一元素的列表.要做到这一点,你需要删除所有独特的元素(这是包含在一个给定的列表 ...

  2. ffmpeg入门之 Tutorial02

    02实际是在01的基础上添加了 SDL显示yuv部分,这部分相对独立. if(SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO | SDL_INIT_TIMER))   ...

  3. EDKII Build Process:EDKII项目源码的配置、编译流程[三]

    <EDKII Build Process:EDKII项目源码的配置.编译流程[3]>博文目录: 3. EDKII Build Process(EDKII项目源码的配置.编译流程) -> ...

  4. 双硬盘RAID 0全攻略

    . RAID53 RAID7即高效数据传送磁盘结构,是RAID3和带区结构的统一,因此它速度比较快,也有容错功能.但价格十分高,不易于实现. 为什么需要磁盘阵列        如何增加磁盘的存取(ac ...

  5. 一款PHP环境整合工具—VertrigoServ介绍

    Vertrigo简介 VertrigoServ 是一个Windows平台下的非常专业的.易于安装的免费网络开发环境,它集成了Apache, PHP, MySQL, SQLite, SQLiteMana ...

  6. 常用UI模板,loading框,提醒框,弹框确认框

    css部分 #public_box{width:100%;height:100%;position:fixed;top:0;left:0;z-index:100;background:rgba(0,0 ...

  7. 玲珑杯#2.5 A-B

    这个题解错了网上还没有题解 囧 = (i%2)? 1 : -1 = - * * *= m #include<bits/stdc++.h> using namespace std; type ...

  8. C# 中?和??的用法

    最近在看官方的源码时,经常看到有 Int? sum; 和 FileProvider = FileProvider ??builder.GetFileProvider(); 一个问号: 很多数据类型时不 ...

  9. 从零一起学Spring Boot之LayIM项目长成记(四) Spring Boot JPA 深入了解

    前言 本篇内容主要是一些关于JPA的常用的一些用法等.内容也是很多是看其他博客学来的,顺道在本系列博客里抽出一篇作为总结.下面让我们来看看吧. 不过我更推荐大家读本篇:https://lufficc. ...

  10. DirectSound---3D环境

    DirectSound对于单声道的Wav文件(或者说对于单声道的PCM音频数据)提供了内置3D音效的模拟,你能够控制每一个声源和收听者的立体位置,对移动的物体应用多普勒效果等等.在单个应用程序中,可以 ...