An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black pixels are connected, i.e., there is only one black region. Pixels are connected horizontally and vertically. Given the location (x, y) of one of the black pixels, return the area of the smallest (axis-aligned) rectangle that encloses all black pixels.

Example:

Input:
[
"0010",
"0110",
"0100"
]
and x = 0, y = 2 Output: 6

这道题给我们一个二维矩阵,表示一个图片的数据,其中1代表黑像素,0代表白像素,现在让找出一个最小的矩阵可以包括所有的黑像素,还给了一个黑像素的坐标,先来看 Brute Force 的方法,这种方法的效率不高,遍历了整个数组,如果遇到了1,就更新矩形,参见代码如下:

解法一:

// Brute force
class Solution {
public:
int minArea(vector<vector<char>>& image, int x, int y) {
int left = y, right = y, up = x, down = x;
for (int i = ; i < image.size(); ++i) {
for (int j = ; j < image[i].size(); ++j) {
if (image[i][j] == '') {
left = min(left, j);
right = max(right, j);
up = min(up, i);
down = max(down, i);
}
}
}
return (right - left + ) * (down - up + );
}
};

下面这种解法是解法一的递归写法,本质上来说跟上面的解法没有啥区别,也没有任何的优化,所以仍然可以认为是暴力搜索法,参见代码如下:

解法二:

// DFS
class Solution {
public:
int minArea(vector<vector<char>>& image, int x, int y) {
int left = y, right = y, up = x, down = x;
dfs(image, x, y, left, right, up, down);
return (right - left + ) * (down - up + );
}
void dfs(vector<vector<char>> &image, int x, int y, int &left, int &right, int &up, int &down) {
if (x < || x >= image.size() || y < || y >= image[].size() || image[x][y] != '') return;
left = min(left, y);
right = max(right, y);
up = min(up, x);
down = max(down, x);
image[x][y] = '';
dfs(image, x + , y, left, right, up, down);
dfs(image, x - , y, left, right, up, down);
dfs(image, x, y + , left, right, up, down);
dfs(image, x, y - , left, right, up, down);
}
};

我们再来看一种优化了时间复杂度的解法,这是一种二分搜索法,以给定的一个黑像素 (x, y) 为中心,分别用二分法快速找到整个黑色区域的上下左右的临界点,然后直接算出面积。首先来看上边界怎么找,既然是以 (x, y) 为中心,而且上边界又是某个行数,那么其范围肯定在 [0, x] 之间,能成为上边界的条件是该行中至少有一个点是1,那么其列数的范围就在 [0, n] 之间,在进行二分搜索的时候,先根据i, j算出中间行 mid,然后列数从0开始遍历,直到找到为1的点,或者越界位置,然后判断列数是否越界,越界的话,说明当前行没有1,此时更新i为 mid+1,如果找到了1,那么更新j为 mid。找下边界也是同样的道理,但是跟上边界稍微又些不同的地方是,如果当前行找到了1,应该再往下找,那么i应该更新为 mid+1;如果没找到,就应该往上找,靠近 (x, y) 点;所以两种情况只是在二分法更新范围的地方正好相反,所以可以用一个 bool 型的变量 opt 来决定还如何更新行数。

下面来看如何确定左边界和右边界,其实跟确定上下边界大同小异。左边界是列数,若以 (x, y) 点为中心,那么其范围便是 [0, y],因为之前已经确定了上下边界 up 和 down 了,所以左边界点的行数范围就是 [up, down],同理,当通过i, j求出了中间列 mid 时,就要遍历该列,找到为1的点,所以此时是用 image[k][mid],而在找上下边界时,用的是 image[mid][k],还是顺序不一样,可以用另外一个 bool 型变量h来控制,h表示 horizontal,就是水平遍历的意思。这样通过两个 bool 型变量就可以用一个函数来涵盖四种情况的二分搜索,是不是很叼?下面更新i或j的时候参考上下边界的分析,应该不难理解,参见代码如下:

解法三:

// Binary Search
class Solution {
public:
int minArea(vector<vector<char>>& image, int x, int y) {
int m = image.size(), n = image[].size();
int up = binary_search(image, true, , x, , n, true);
int down = binary_search(image, true, x + , m, , n, false);
int left = binary_search(image, false, , y, up, down, true);
int right = binary_search(image, false, y + , n, up, down, false);
return (right - left) * (down - up);
}
int binary_search(vector<vector<char>> &image, bool h, int i, int j, int low, int high, bool opt) {
while (i < j) {
int k = low, mid = (i + j) / ;
while (k < high && (h ? image[mid][k] : image[k][mid]) == '') ++k;
if (k < high == opt) j = mid;
else i = mid + ;
}
return i;
}
};

参考资料:

https://leetcode.com/problems/smallest-rectangle-enclosing-black-pixels/

https://leetcode.com/problems/smallest-rectangle-enclosing-black-pixels/discuss/75128/1ms-Concise-Java-Binary-Search-(DFS-is-4ms)

https://leetcode.com/problems/smallest-rectangle-enclosing-black-pixels/discuss/75127/C%2B%2BJavaPython-Binary-Search-solution-with-explanation

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Smallest Rectangle Enclosing Black Pixels 包含黑像素的最小矩阵的更多相关文章

  1. LeetCode Smallest Rectangle Enclosing Black Pixels

    原题链接在这里:https://leetcode.com/problems/smallest-rectangle-enclosing-black-pixels/ 题目: An image is rep ...

  2. [Swift]LeetCode302. 包含黑色像素的最小矩形 $ Smallest Rectangle Enclosing Black Pixels

    An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black ...

  3. 【leetcode】302.Smallest Rectangle Enclosing Black Pixels

    原题 An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The bl ...

  4. 302. Smallest Rectangle Enclosing Black Pixels

    题目: An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The b ...

  5. Smallest Rectangle Enclosing Black Pixels

    An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black ...

  6. [Locked] Smallest Rectangle Enclosing Black Pixels

    An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black ...

  7. Smallest Rectangle Enclosing Black Pixels 解答

    Question An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. ...

  8. LC 302. Smallest Rectangle Enclosing Black Pixels【lock, hard】

    An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black ...

  9. leetcode Largest Rectangle in Histogram 单调栈

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4052343.html 题目链接 leetcode Largest Rectangle in ...

随机推荐

  1. Vertica数据库常用管理命令汇总

    1.查询数据库是否有等待 select * from resource_queues where node_name=(select node_name from nodes order by nod ...

  2. SpringMVC一路总结(二)

    冰冻三尺非一日之寒.对技术的学习尤其得遵循这么一个理.在<SpringMVC一路总结(一)>中,清楚的总结了SpringMVC的入门案例,对于这类入门demo,理清套路,整理思绪是最为重要 ...

  3. Python爬虫小白入门(三)BeautifulSoup库

    # 一.前言 *** 上一篇演示了如何使用requests模块向网站发送http请求,获取到网页的HTML数据.这篇来演示如何使用BeautifulSoup模块来从HTML文本中提取我们想要的数据. ...

  4. Rafy 框架 - 插件级别的扩展点

    本章说明如何使用额外的插件(如客户化插件)对另一插件(如产品插件)进行扩展.   使用场景 在 产品线工程 中,项目的研发分为领域工程和应用工程.这个过程中会需要对领域工程中的内容进行大量的扩展.   ...

  5. 开源跨平台IOT通讯框架ServerSuperIO,集成到NuGet程序包管理器,以及Demo使用说明

          物联网涉及到各种设备.各种传感器.各种数据源.各种协议,并且很难统一,那么就要有一个结构性的框架解决这些问题.SSIO就是根据时代发展的阶段和现实实际情况的结合产物. 各种数据信息,如下图 ...

  6. java web学习总结(二十四) -------------------Servlet文件上传和下载的实现

    在Web应用系统开发中,文件上传和下载功能是非常常用的功能,今天来讲一下JavaWeb中的文件上传和下载功能的实现. 对于文件上传,浏览器在上传的过程中是将文件以流的形式提交到服务器端的,如果直接使用 ...

  7. 很强大的HTML+CSS+JS面试题(附带答案)

    一.单项选择(165题) 1.HTML是什么意思? A)高级文本语言 B)超文本标记语言 C)扩展标记语言 D)图形化标记语言 2.浏览器针对于HTML文档起到了什么作用? A)浏览器用于创建HTML ...

  8. NodeJs端口被占用的情况

    在NodeJs运行的时候,我们往往会遇到一个问题:“端口被占用”,这个问题,我们的处理办法有哪些呢? 这里我只介绍一下linux下的方法: 1.使用nodeme(忘记是不是这个啦,回去查下,这个要安装 ...

  9. css知识点整理

    CSS是Cascading Style Sheets的简称,中文称为层叠样式表,用来控制网页数据的表现,可以使网页的表现与数据内容分离. 一.css引入的方式 1.行内样式:行内式是在标记的style ...

  10. 基于SAP的中国式数据分析浅谈

    大数据时代,虽然多数企业数据的应用并不能称得上是“大数据”,但也证实了数据应用的重要性和影响力.确实,数据作为企业发展的信息沉淀,已成为企业的重要资产,如何有效利用数据是每个企业必须面临的课题. 这里 ...