[LOJ 6185]烷基计数
Description
众所周知,大连 24 中是一所神奇的学校,在那里,化竞的同学很多都擅长写代码。
有一天,化学不及格的胡小兔向化竞巨佬晴岚请教化学题:
“n 个碳原子的烷基共有多少种同分异构体?”
刚刚得了化竞全市第一的晴岚听了,认为这道题十分简单,建议胡小兔写个程序解决这个问题。但胡小兔弱得连什么是同分异构体都不知道,于是晴岚给胡小兔画了个图——例如 n=4 时(即丁基),有 4 种同分异构体:

同理,其他常见烷基同分异构体数目如下表:
| n | 1 | 2 | 3 | 4 | 5 | 6 |
| 同分异构体数目 | 1 | 1 | 2 | 4 | 8 | 17 |
现在已知碳原子个数 n,求对应的烷基有多少种同分异构体。
P.S. 2017.11.30更新:化竞巨佬晴岚高二进国集保送北大了……
Input
输入一行,一个整数 n,表示烷基中碳原子的数目。
Output
输出该烷基同分异构体的数目,对 10^9+7 取模。
Sample Input
6
Sample Output
17
Hint
1≤n≤400
注意:这里的烷基计数不用考虑空间异构,能否稳定存在等各种特殊情况。也就是说,你要求的是 n 个点的每个点度数不超过 4 且根的度数不超过 3 的有根树的数目。
题解
按照“二叉树个数”的思路,我们可以枚举每个节点儿子子树的大小来做。
值得注意的是,这棵树的儿子是无序的所以不能简单用乘法原理相乘。记 $f_k$ 为子树大小为 $k$ 的生成树的个数。记其三个儿子大小为 $i,j,p$ 显然 $i+j+p = k-1$ 。不妨设 $i <= j <= p$。
满足:
$$f_k =
\begin{cases}
C_{f_i+3-1}^3& \text{i = p}\\
C_{f_i+2-1}^2*f_p& \text{i = j}\\
C_{f_j+2-1}^2*f_i& \text{j = p}\\
f_i*f_j*f_p& \text{otherwise}
\end{cases}$$
其中形同 $C_{n+m-1}^m$ 是可重复的组合数。
//It is made by Awson on 2018.1.2
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int N = ;
const int MOD = 1e9+; int n;
int f[N+]; int quick_pow(int x, int y) {
int ans = ;
while (y) {
if (y&) ans = (LL)ans*x%MOD;
x = (LL)x*x%MOD, y >>= ;
}
return ans;
}
void work() {
scanf("%d", &n);
f[] = ;
for (int k = ; k <= n; k++)
for (int i = ; i <= k; i++)
for (int j = i; j <= k; j++) {
int p = k--i-j; if (p < j) break;
if (i == p) (f[k] += (LL)f[i]*(f[i]+)%MOD*(f[i]+)%MOD*quick_pow(, MOD-)%MOD) %= MOD;
else if (i == j) (f[k] += (LL)f[i]*(f[i]+)%MOD*quick_pow(, MOD-)%MOD*f[p]%MOD) %= MOD;
else if (j == p) (f[k] += (LL)f[p]*(f[p]+)%MOD*quick_pow(, MOD-)%MOD*f[i]%MOD) %= MOD;
else (f[k] += (LL)f[i]*f[j]%MOD*f[p]%MOD) %= MOD;
}
printf("%d\n", f[n]);
}
int main() {
work();
return ;
}
[LOJ 6185]烷基计数的更多相关文章
- LOJ #6538. 烷基计数 加强版 加强版(生成函数,burnside引理,多项式牛顿迭代)
传送门. 不妨设\(A(x)\)表示答案. 对于一个点,考虑它的三个子节点,直接卷起来是\(A(x)^3\),但是这样肯定会计重,因为我们要的是无序的子节点. 那么用burnside引理,枚举一个排列 ...
- 【loj6538】烷基计数 加强版 加强版 Burnside引理+多项式牛顿迭代
别问我为啥突然刷了道OI题,也别问我为啥花括号不换行了... 题目描述 求含 $n$ 个碳原子的本质不同的烷基数目模 $998244353$ 的结果.$1\le n\le 10^5$ . 题解 Bur ...
- LOJ #10070 最小生成树计数
一道mst-- 最开始是毫无头绪,于是就点开了--->题解 大部分题解都是矩阵树--然而第一篇题解告诉了我们暴搜也能过( 思路大概是说,对于一个图\(G\),它的所有最小生成树的相同权值的边的数 ...
- LOJ#2320 生成树计数
解:讲一个别的题解里我比较难以理解的地方,就是为什么可以把这两个东西合起来看成某一个连通块指数是2m而别的指数都是m. 其实很好理解,但是别人都略过了......把后面的∑提到∏的前面,然后展开,也可 ...
- loj #6570. 毛毛虫计数
$ \color{#0066ff}{ 题目描述 }$ hsezoi 巨佬 olinr 喜欢 van 毛毛虫,他定义毛毛虫是一棵树,满足树上存在一条树链,使得树上所有点到这条树链的距离最多为 1. 给定 ...
- LOJ6071. 「2017 山东一轮集训 Day5」字符串 [SAM]
LOJ 思路 这种计数题显然是要先把每一个合法的串用唯一的方法表示出来.(我连这都没想到真是无可救药了) 如何唯一?容易想到把前缀尽可能多地在第一个串填掉,然后填第二个,第三个-- 如何做到这样?可以 ...
- Loj 2320.「清华集训 2017」生成树计数
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...
- loj#2665. 「NOI2013」树的计数
目录 题目链接 题解 代码 题目链接 loj#2665. 「NOI2013」树的计数 题解 求树高的期望 对bfs序分层 考虑同时符合dfs和bfs序的树满足什么条件 第一个点要强制分层 对于bfs序 ...
- loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数
题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...
随机推荐
- Android开发简易教程
Android开发简易教程 Android 开发因为涉及到代码编辑.UI 布局.打包等工序,有一款好用的IDE非常重要.Google 最早提供了基于 Eclipse 的 ADT 作为开发工具,后来在2 ...
- Python 双向链表
操作 is_empty() 链表是否为空 length() 链表长度 travel() 遍历链表 add(item) 链表头部添加 append(item) 链表尾部添加 insert(pos, it ...
- Spring-Data-JPA整合MySQL和配置
一.简介 (1).MySQL是一个关系型数据库系统,是如今互联网公司最常用的数据库和最广泛的数据库.为服务端数据库,能承受高并发的访问量. (2).Spring-Data-Jpa是在JPA规范下提供的 ...
- Java并发编程实战 之 线程安全性
1.什么是线程安全性 当多个线程访问某个类时,不管运行时环境采用何种调用方式或者这些线程将如何交替执行,并且在主调代码中不需要任何额外的同步或协同,这个类都能表现出正确的行为,那么就称这个类是线程安全 ...
- DOM中的事件对象(event)
在触发DOM上的某个事件时,会产生一个事件对象event,这个对象中包含着所有与事件相关的信息. 包括导致事件的元素.事件的类型以及其他与特定事件相关的信息. 例如:鼠标操作导致的事件对象中,会包含鼠 ...
- JAVA_SE基础——50.接口关系下的多态
接口关系下的多态和继承关系下的多态 相差无几,应该更简单些~ 多态: 父类的引用类型变量指向了子类的对象或者是接口类型的引用类型变量指向了接口实现类 的对象. 实现关系下的多态: 接口 变量 = ...
- Javascript 装饰器极速指南
pablo.png Decorators 是ES7中添加的JavaScript新特性.熟悉Typescript的同学应该更早的接触到这个特性,TypeScript早些时候已经支持Decorators的 ...
- Mego开发文档 - 快速概述
Mego 快速概述 Mego 是一款轻量级,可扩展和跨平台的数据访问技术. Mego 是一个对象关系映射器(O / RM),它使.NET开发人员能够使用.NET对象处理数据库.它消除了开发人员通常需要 ...
- 粒子系统(二):Canvas绘制精美图案
准备 IDE:Visual Studio Code Language:JavaScript / ECMAScript 6+ GitHub:Natural2D.JS 本文主要讲述 Particles - ...
- EasyUI combobox下拉多选框的实现
combobox实现下拉列表多选, 效果如下