Matlab:线性热传导(抛物线方程)问题


函数文件1:real_fun.m
function f=real_fun(x0,t0)
f=(x0-x0^2)*exp(-t0);
函数文件2:fun.m
function f=fun(x0,t0)
f=(x0^2-x0)*exp(-t0)+2*exp(-t0);
函数文件3:fi.m
function f=fi(x0)
f=x0-x0^2;
脚本文件:
tic;
clc
clear
N=100;
M=1000;
t_h=1/M;%t的步长
x_h=1/N;%x的步长
x=0:x_h:1;%x的节点
t=0:t_h:1;%t的节点
B=-2*ones(1,N-1);
C=1*ones(1,N-2);
D=1*ones(1,N-2);
A=diag(B)+diag(C,1)+diag(D,-1);%三对角矩阵
F=zeros(N-1,M);
for i=1:N-1
for j=1:M
F(i,j)=fun(x(i+1),t(j));
end
end
F=F.*t_h;
%********************数值解************************************
J=-N^2*A*t_h+eye(N-1);%求解线性方程组的系数矩阵
initial=zeros(N-1,1);
z=zeros(N-1,M); for i=1:N-1
initial(i)=fi(x(i+1));
end
b=initial;
for j=1:M%控制t的节点
a=b;
a=a+F(1:N-1,j);
z(1:N-1,j)=J\a;%解是n-1维的
b=z(1:N-1,j);%变成下一次求解的初值
end
z=[initial,z];
Z=[zeros(1,M+1);z;zeros(1,M+1)]; %********************数值解************************************
for i=1:N+1
for j=1:M+1
real_Z(i,j)=real_fun(x(i),t(j));
end
end
compare=abs(real_Z-Z);
[X,Y]=meshgrid(x,t);
% colormap(jet) subplot(2,2,1),
mesh(X,Y,Z');
xlabel('x');ylabel('t');zlabel('u');title('analytical solution');
subplot(2,2,2),
mesh(X,Y,real_Z');
xlabel('x');ylabel('t');zlabel('u');title('numerical solution');
subplot(2,2,3),
mesh(X,Y,compare');
xlabel('x');ylabel('t');zlabel('u');title('error solution');
grid on;
toc;
效果图:

Matlab:线性热传导(抛物线方程)问题的更多相关文章
- C# 简单实现直线方程,抛物线方程
本例子是简单的在WinForm程序中实现在坐标系中绘制直线方程,抛物线方程,点.重新学习解析几何方面的知识.仅供学习分享使用,如有不足之处,还请指正. 涉及知识点: 直线方程的表达方式:一般表达式Ax ...
- C# 简单实现直线方程,抛物线方程(转载)
http://www.cnblogs.com/hsiang/archive/2017/01/17/6294864.html 本例子是简单的在WinForm程序中实现在坐标系中绘制直线方程,抛物线方程, ...
- 求解线性递推方程第n项的一般方法
概述 系数为常数,递推项系数均为一次的,形如下面形式的递推式,称为线性递推方程. \[f[n]=\begin{cases} C &n\in Value\\ a_1 f[n-1]+a_2 f[n ...
- Matlab:非线性热传导(抛物方程)问题
函数文件1:real_fun.m function f=real_fun(x0,t0) %精确解 f=4*x0*(1-x0)*sin(t0); 函数文件2:F.m function f=F(N,u,U ...
- MATLAB线性回归方程与非线性回归方程的相关计算
每次比赛都需要查一下,这次直接总结到自己的博客中. 以这个为例子: 2.线性方程的相关计算 x=[1,2,3,4,5]';%参数矩阵 X=[ones(5,1),x];%产生一个5行一列的矩阵,后接x矩 ...
- MATLAB 符号变量表达式 + 方程求解
源代码见文末 部分源代码: % 符号变量 两种表达方式 a=sym('a'); class(a); syms b; b; % 符号常量 c=sym('); c; % 符号表达式 三种表达方式 f1=' ...
- MATLAB——线性神经网络
这个函数默认使用最小二乘,所以不需要训练 % example5_1.m x=-:; y=*x-; % 直线方程为 randn(); % 设置种子,便于重复执行 y=y+randn(,length(y ...
- Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...
- HDU_1071——积分求面积,抛物线顶点公式
Problem Description Ignatius bought a land last week, but he didn't know the area of the land becaus ...
随机推荐
- 在Windows上搭建Git Server
Git在版本控制方面,相比与SVN有更多的灵活性,对于开源的项目,我们可以托管到Github上面,非常方便,但是闭源的项目就会收取昂贵的费用. 那么私有项目,如何用Git进行代码版本控制呢?我们可以自 ...
- java框架之SpringBoot(6)-Restful风格的CRUD示例
准备 环境 IDE:Idea SpringBoot版本:1.5.19 UI:BootStrap 4 模板引擎:thymeleaf 3 效果:Restful 风格 CRUD 功能的 Demo 依赖 &l ...
- 10个有趣的Python教程,附视频讲解+练手项目。
从前的日色变得慢,车.马.邮件都慢 一生只够爱一门编程语言 从前的教程也好看,画面精美有样子 你看了,立马就懂了 Python最性感的地方,就在于它的趣味性和前沿性,学习Python,你总能像科技节的 ...
- Linux平台 Oracle 18c RAC安装Part2:GI配置
三.GI(Grid Infrastructure)安装 3.1 解压GI的安装包 3.2 安装配置Xmanager软件 3.3 共享存储LUN的赋权 3.4 使用Xmanager图形化界面配置GI 3 ...
- 使用CI遇到的问题报错:Call to undefined function base_url()
问题来源:在HTML文件中使用base_url()函数引入CSS文件时,发现报错:Call to undefined function base_url() 研究了一下才知道是因为没有加载url小助手 ...
- U-boot2010.06移植--阶段一
2011-02-24 23:14:57 我今天的移植将分如下3步.加上写记录文档,预计时间3小时. 一,不改变源码,完成编译. 二,修改源码,搭建一个U-boot的框架,完成编译. 三,修改源码,完成 ...
- 1005 继续(3n+1)猜想 (25 分)
1005 继续(3n+1)猜想 (25 分) 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推 ...
- 怎样从外网访问内网DB2数据库
外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...
- 一些sql优化原则
1.我们在设计表的时候,尽量让字段拥有默认值,尽量不要让字段的值为null. 因为,在 where 子句中对字段进行 null 值判断(is null或is not null)将导致引擎放弃使用索引而 ...
- Greeting Card
问题 G: Greeting Card 时间限制: 1 Sec 内存限制: 128 MB 提交: 666 解决: 59 [提交] [状态] [命题人:admin] 题目描述 Quido plans ...