题目大意:维护一个集合,支持单点修改、查询小于 X 的数的个数、查询小于 X 的数的和。

题解:学习到了动态开点线段树。对于一棵未经离散化的权值线段树来说,对于静态开点来说,过大的值域会导致不能承受的空间。还可以发现,对于每次修改操作只会涉及一条树链,即:\(O(logn)\) 个节点,因此总共所需的空间为 \(O(mlogn)\)。基于以上想法,采用动态开点的操作,即:该节点被修改,则动态地创建这个节点。反之,没有被用到的节点直接忽略掉即可。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e7+10;
const int mx=1e9+1; inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
} int n,m,a[maxn]; struct node{
#define ls(x) t[x].lc
#define rs(x) t[x].rc
int lc,rc,size;
long long sum;
}t[maxn<<1];
int tot,root;
inline void pushup(int o){
t[o].size=t[ls(o)].size+t[rs(o)].size;
t[o].sum=t[ls(o)].sum+t[rs(o)].sum;
}
void modify(int &o,int l,int r,int pos,int val){
if(!o)o=++tot;
if(l==r){t[o].size+=val,t[o].sum+=l*val;return;}
int mid=l+r>>1;
if(pos<=mid)modify(ls(o),l,mid,pos,val);
else modify(rs(o),mid+1,r,pos,val);
pushup(o);
}
long long querys(int o,int l,int r,int x,int y){
if(!o)return 0;
if(l==x&&r==y)return t[o].sum;
int mid=l+r>>1;
if(y<=mid)return querys(ls(o),l,mid,x,y);
else if(x>mid)return querys(rs(o),mid+1,r,x,y);
else return querys(ls(o),l,mid,x,mid)+querys(rs(o),mid+1,r,mid+1,y);
}
int querysz(int o,int l,int r,int x,int y){
if(!o)return 0;
if(l==x&&r==y)return t[o].size;
int mid=l+r>>1;
if(y<=mid)return querysz(ls(o),l,mid,x,y);
else if(x>mid)return querysz(rs(o),mid+1,r,x,y);
else return querysz(ls(o),l,mid,x,mid)+querysz(rs(o),mid+1,r,mid+1,y);
} void solve(){
n=read(),m=read();
char opt[2];
while(m--){
scanf("%s",opt);
if(opt[0]=='U'){
int pos=read(),val=read();
modify(root,0,mx,a[pos],-1);
modify(root,0,mx,a[pos]=val,1);
}else{
int c=read(),s=read();
int k=querysz(root,0,mx,s,mx);
long long sum=querys(root,0,mx,0,s-1);
puts(sum>=(long long)s*(c-k)?"TAK":"NIE");
}
}
} int main(){
solve();
return 0;
}

【洛谷P3586】LOG的更多相关文章

  1. 树状数组【洛谷P3586】 [POI2015]LOG

    P3586 [POI2015]LOG 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1 ...

  2. 洛谷 P3586 [POI2015]LOG

    P3586 [POI2015]LOG 题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它 ...

  3. 洛谷P3586 [POI2015]LOG(贪心 权值线段树)

    题意 题目链接 Sol 显然整个序列的形态对询问没什么影响 设权值\(>=s\)的有\(k\)个. 我们可以让这些数每次都被选择 那么剩下的数,假设值为\(a_i\)次,则可以\(a_i\)次被 ...

  4. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

  5. 洛谷 P3927 Factorial

    题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. SOL菌表示不服,立刻就要算这个数在k进制表示下末尾0的个数. 但是SOL菌太菜了于是请 ...

  6. 洛谷 P3377 【模板】左偏树(可并堆)

    洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...

  7. 洛谷 P3370 【模板】字符串哈希

    洛谷 P3370 [模板]字符串哈希 题目描述 如题,给定N个字符串(第i个字符串长度为Mi,字符串内包含数字.大小写字母,大小写敏感),请求出N个字符串中共有多少个不同的字符串. 友情提醒:如果真的 ...

  8. 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)

    洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...

  9. 洛谷P3434 [POI2006]KRA-The Disks(线段树)

    洛谷题目传送门 \(O(n)\)的正解算法对我这个小蒟蒻真的还有点思维难度.洛谷题解里都讲得很好. 考试的时候一看到300000就直接去想各种带log的做法了,反正不怕T...... 我永远只会有最直 ...

随机推荐

  1. linux及安全第六周总结

    进程控制块pcb——task_struct 操作系统三大功能: 进程管理(核心) 内存管理 文件系统 为了管理进程,内核必须对每个进程进行清晰的描述,进程描述符提供了内核所需了解的进程信息: 进程状态 ...

  2. Linux实践一:问题及解决

    安装ubuntu出现的问题 : 打开镜像.iso文件,v-box好像是不识别这种格式的,它识别的好像是.vdi等格式,所以要用vm虚拟机打开镜像安装 打开镜像,按照步骤安装后,安装很久后,出现问题.初 ...

  3. linux第三次实践:ELF文件格式分析

    linux第三次实践:ELF文件格式分析 标签(空格分隔): 20135328陈都 一.概述 1.ELF全称Executable and Linkable Format,可执行连接格式,ELF格式的文 ...

  4. 冒泡,选择,插入,快速排序在Java中的实现

    近几天再重新看数据结构的书时,根据各种排序的空间复杂度,发现快速排序所用时间是最短的,也即是说快速排序的速度最快.因此想验证一下具体这几个排序发的快慢,所以在Java中得以实现,同时在运行时,发现虽然 ...

  5. “数学口袋精灵”第二个Sprint计划(第九天)

    第九天进度 任务分配: 冯美欣:欢迎界面背景音乐发现bug(一开始进入游戏可以播放音乐,进入游戏界面,再返回欢迎界面时,音乐播放不出来),仍在解决中: 吴舒婷:改进ui与音效 1.进度条.金黄色: 2 ...

  6. Quartz中时间表达式的设置-----corn表达式 (转)(http://www.cnblogs.com/GarfieldTom/p/3746290.html)

    Quartz中时间表达式的设置-----corn表达式 (注:这是让我看比较明白的一个博文,但是抱歉,没有找到原作者,如有侵犯,请告知) 时间格式: <!-- s m h d m w(?) y( ...

  7. IO学习

    ---恢复内容开始--- 命名规则: 1.类名使用 UpperCamelCase 风格,必须遵从驼峰形式,但以下情形例外:(领域模型 的相关命名)DO / BO / DTO / VO 等. 2.方法名 ...

  8. java数值运算后精度丢失问题

    最近连续俩次遇到运算后数值精度丢失问题,所以记录一下. 问题1:java计算百分比,应该得到57,可返回的就是56 在java代码中 BigDecimal progress; BigDecimal a ...

  9. JavaScript 编程易错点整理

    Case 1: 通过getElementById("id")获得是一个DOM元素节点对象: 通过getElementsByTagName("tagName")获 ...

  10. ngnix使用超时响应时间配置避坑一例

    ngnix的超时响应时间配置得比tomcat的spring mvc响应时间还小,悲剧就发生了,生产环境还不易发现. 就好比定制固定木柜没考虑进门的尺寸,横竖斜都进不去,太悲剧了.哈哈哈,以此为鉴!~