非常恶心的一道数学题,推式子推到吐血。

光是\(\gcd\)求和我还是会的,但是多了个\(ij\)是什么鬼东西。

\[\sum_{i=1}^n\sum_{j=1}^nij\gcd(i,j)=\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[\gcd(i,j)=d]
\]

很套路的把后面的\(d\)提出来:

\[\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[\gcd(i,j)=d]=\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor\frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor\frac{n}{d} \rfloor} ij[\gcd(i,j)=1]
\]

利用\(\sum_{d|n}\mu(d)=[n=1]\)替换掉\([\gcd(i,j)=1]\)就有:

\[\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor\frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor\frac{n}{d} \rfloor} ij[\gcd(i,j)=1]=\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor\frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor\frac{n}{d} \rfloor} ij\sum_{x|\gcd(i,j)}\mu(x)
\]

然后第一个难点来了,我们把\(x\)弄到前面去枚举,然后利用和式的变换,枚举\(i,j\)是\(x\)的多少倍,然后用分配率凑在一起就有:

\[\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor\frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor\frac{n}{d} \rfloor} ij\sum_{x|\gcd(i,j)}\mu(x)=\sum_{d=1}^nd^3\sum_{x=1}^{\lfloor\frac{n}{d} \rfloor}\mu(x) (\sum_{i=1}^{\lfloor\frac{n}{dx} \rfloor})^2x^2
\]

PS:如果上面理解了那么下面就不难了,我们设\(T=dx\)带进去就有:

\[\sum_{d=1}^nd^3\sum_{x=1}^{\lfloor\frac{n}{d} \rfloor}\mu(x) (\sum_{i=1}^{\lfloor\frac{n}{dx} \rfloor})^2x^2=\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2\sum_{d|T}d^3\mu(\frac{T}{d})(\frac{T}{d})^2
\]

后面那个东西可以直接提出来就得到:

\[\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2\sum_{d|T}d^3\mu(\frac{T}{d})(\frac{T}{d})^2=\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2\sum_{d|T}dT^2\mu(\frac{T}{d})
\]

把\(T^2\)提到前面去:

\[\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2\sum_{d|T}dT^2\mu(\frac{T}{d})=\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2T^2\sum_{d|T}d\mu(\frac{T}{d})
\]

后面那个\(\sum_{d|T}d\mu(\frac{T}{d})\)显然就是狄利克雷卷积的形式啊,这就等于\((id\ast\mu)(T)\)

然后回忆一下,\((id\ast\mu)(T)\)不就是\(\phi\)么,因此带进去就有:

\[\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2T^2\sum_{d|T}d\mu(\frac{T}{d})=\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2T^2\phi(T)
\]

把\(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i\)用等差数列求和的公式展开就变成:

\[\sum_{T=1}^n(\sum_{i=1}^{\lfloor\frac{n}{T} \rfloor}i)^2T^2\phi(T)=\sum_{T=1}^n(\frac{(1+\lfloor\frac{n}{T} \rfloor)\cdot\lfloor\frac{n}{T} \rfloor}{2})^2T^2\phi(T)
\]

如果我们对\(\lfloor\frac{n}{T}\rfloor\)做除法分块,那么现在要求的就是\(T^2\phi(T)\)的前缀和了

考虑用杜教筛的方法化式子,我们设\(f(i)=i^2\phi(i)\),这个时候我们要找一个\(g\)和\(f\)卷起来可以方便求。

由于\(i^2\)很烦,我们考虑先把它消去。令\(g(i)=i^2\),则有:

\(h(n)=(f\ast g)(n)=\sum_{d|n} d^2\phi(d)(\frac{n}{d})^2=n^2\ast(\phi\ast \epsilon)(n)=n^3\)

所以用杜教筛的套路式就是\(g(1)f(n)=h(n)-\sum_{d=2}^ng(d)f(\lfloor\frac{n}{d}\rfloor)\)

即\(f(n)=\sum_{i=1}^ni^3-\sum_{d=2}^ng(d)f(\lfloor\frac{n}{d}\rfloor)\),我们知道\(\sum_{i=1}^ni^3=(\frac{n(n+1)}{2})^2,\sum_{i=1}^ni^2=\frac{n(n+1)(2n+1)}{6}\),所以都可以\(O(1)\)求啦。

CODE

#include<cstdio>
#include<map>
#define RI register int
#define RL register LL
using namespace std;
typedef long long LL;
const int P=10000000;
map <LL,int> sum_f; LL n; int prime[P+5],phi[P+5],cnt,f[P+5],mod,inv2,inv6,ans; bool vis[P+5];
inline void inc(int &x,int y)
{
if ((x+=y)>=mod) x-=mod;
}
inline void dec(int &x,int y)
{
if ((x-=y)<0) x+=mod;
}
inline int quick_pow(int x,int p,int mul=1)
{
for (;p;p>>=1,x=1LL*x*x%mod) if (p&1) mul=1LL*mul*x%mod; return mul;
}
inline int sum(int x)
{
return 1LL*x*(x+1)%mod*inv2%mod;
}
inline int sqr(int l,int r)
{
int t=1LL*r*(r+1)%mod*((r<<1LL)+1)%mod*inv6%mod;
dec(t,1LL*l*(l-1)%mod*((l<<1LL)-1)%mod*inv6%mod); return t;
}
#define Pi prime[j]
inline void Euler(void)
{
vis[1]=phi[1]=1; RI i,j; for (i=2;i<=P;++i)
{
if (!vis[i]) prime[++cnt]=i,phi[i]=i-1;
for (j=1;j<=cnt&&i*Pi<=P;++j)
{
vis[i*Pi]=1; if (i%Pi) phi[i*Pi]=phi[i]*(Pi-1);
else { phi[i*Pi]=phi[i]*Pi; break; }
}
}
for (i=1;i<=P;++i) f[i]=f[i-1],inc(f[i],1LL*phi[i]*i%mod*i%mod);
}
#undef Pi
inline int F(LL x)
{
if (x<=P) return f[x]; if (sum_f.count(x)) return sum_f[x];
int ans=sum(x%mod); ans=1LL*ans*ans%mod; for (RL l=2,r;l<=x;l=r+1)
{
r=x/(x/l);
int t=sqr(l%mod,r%mod);
dec(ans,1LL*t*F(x/l)%mod);
}
return sum_f[x]=ans;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
scanf("%d%lld",&mod,&n); Euler(); inv2=quick_pow(2,mod-2);
inv6=quick_pow(6,mod-2); for (RL l=1,r;l<=n;l=r+1)
{
r=n/(n/l); int t=sum(n/l%mod); t=1LL*t*t%mod;
int Fs=F(r); dec(Fs,F(l-1)); inc(ans,1LL*t*Fs%mod);
}
return printf("%d",ans),0;
}

Luogu P3768 简单的数学题的更多相关文章

  1. luogu P3768 简单的数学题 杜教筛 + 欧拉反演 + 逆元

    求 $\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j)$   考虑欧拉反演: $\sum_{d|n}\varphi(d)=n$   $\Rightarrow \sum_{i ...

  2. 洛谷 P3768 简单的数学题 解题报告

    P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgc ...

  3. 【Luogu】P3768简单的数学题(杜教筛)

    题目链接 emm标题全称应该叫“莫比乌斯反演求出可狄利克雷卷积的公式然后卷积之后搞杜教筛” 然后成功地困扰了我两天qwq 我们从最基本的题意开始,一步步往下推 首先题面给出的公式是$\sum\limi ...

  4. P3768 简单的数学题(莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P3768 [题目描述] 求 \(\sum_{i=1}^{n}\sum_{j=1}^{n}i* j* gcd( ...

  5. 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...

  6. 洛谷 P3768 简单的数学题

    https://www.luogu.org/problemnew/show/P3768 化简一下式子,就是$\sum_{d=1}^ncalc(d)d^2\varphi(d)$ 其中$calc(d)=\ ...

  7. 【刷题】洛谷 P3768 简单的数学题

    题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd ...

  8. P3768 简单的数学题 杜教筛+推式子

    \(\color{#0066ff}{ 题目描述 }\) 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ij ...

  9. 洛谷P3768 简单的数学题(莫比乌斯反演+狄利克雷卷积+杜教筛)

    传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.or ...

随机推荐

  1. Fiddler抓包使用教程-过滤

    转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/72929800 本文出自[赵彦军的博客] Fiddler抓包可以完成我们移动开发者的 ...

  2. JavaScript大杂烩17 - 性能优化

    在上一节推荐实践中其实很多方面是与效率有关的,但那些都是语言层次的优化,这一节偏重学习大的方面的优化,比如JavaScript脚本的组织,加载,压缩等等. 当然在此之前,分析一下浏览器的特征还是很有意 ...

  3. 遇到npm报错read ECONNRESET怎么办

    遇到npm 像弱智一样报错怎么办 read ECONNRESET This is most likely not a problem with npm itselft 'proxy' config i ...

  4. [20171225]变态的windows批处理4.txt

    [20171225]变态的windows批处理4.txt --//昨天学习windows 批处理的echo &.使用它可以实现类似回车换行的功能.例子: 1.echo &.R:\> ...

  5. HTML 5 <input> list 属性

    定义和用法 list 属性引用数据列表,其中包含输入字段的预定义选项. 可以用来做关联搜素

  6. V4L2 driver -整体架构

    我的uvc开源地址:gitee-uvc 字符设备驱动程序核心:V4L2本身就是一个字符设备,具有字符设备所有的特性,暴露接口给用户空间. V4L2 驱动核心:主要是构建一个内核中标准视频设备驱动的框架 ...

  7. NetBeans数据库笔记---三层架构

    1.创建数据库,数据表 用MySQL数据库和Navicat for MySQL工具创建表 2.创建实体类——反应表结构(列——变量) 也就是对应表建立的gets和sets方法,实体类的名字一般都与数据 ...

  8. SQL 三范式

    第一范式:无重复的列,一列只能包含一个字段 第二范式:主键约束,一行只能被唯一标识 第三范式:非主键字段要严格依赖于主键字段

  9. 栈和堆(Stack && Heap)

    一.前言      直到现在,我们已经知道了我们如何声明常量类型,例如int,double,等等,还有复杂的例如数组和结构体等.我们声明他们有各种语言的语法,例如Matlab,Python等等.在C语 ...

  10. MVC设计模式在网站中的应用

    MVC设计模式在网站中的应用 以淘宝的购物车为例 一.结合六个基本质量属性 可修改性 采用MVC设计模式的时候,可以将视图.模型.控制器分析,将用户动作.数据表示.应用数据分离开来,如果用户需要以不同 ...