题目链接:http://codeforces.com/gym/101981/attachments

题意:

令 $mul(l,r) = \prod_{i=l}^{r}a_i$,且 $fac(l,r)$ 代表 $mul(l,r)$ 的不同素因子个数。求 $\sum_{i=1}^{n}\sum_{j=i}^{n}fac(i,j)$。

Input
The first line contains one integer n (1 \le n \le 10^6) — the length of the sequence.
The second line contains n integers ai (1 \le i \le n, 1 \le a_i \le 10^6) — the sequence.

Output
Print the answer to the equation.

Examples
standard input
10
99 62 10 47 53 9 83 33 15 24

standard output
248

standard input
10
6 7 5 5 4 9 9 1 8 12

standard output

134

题解:

考虑每个质因子对于整体答案的贡献。

拿第二组样例算一算就不难发现:第 $p$ 个位置上的数,其包含的任意一个素因子,它原本应当产生的贡献有 $(n-p+1) \cdot p$,

但是考虑到若其前面出现过一样的素数,那么应当减去一些重复计算的区间。假设它前面的和它一样的素数,最后一次出现在 $q$ 位置,那么就应当减去 $(n-p+1) \cdot q$,即 $a[p]$ 包含的任意一个质因子其产生的贡献为 $(n-p+1) \cdot p - (n-p+1) \cdot q = (n-p+1) \cdot (p - q)$。

不妨用 $pos[i][k]$ 来存储每个素因子的 “$p$”,$pos[i][k-1]$ 存储每个素因子的 “$q$”。换句话说,$pos[i][k]$ 代表某个素因子 $i$ 在 $a[1 \sim n]$ 中第 $k$ 次“出现”的位置是 $pos[i][k]$;特别地,令 $pos[i][0]=0$。那么对于任意素因子 $i$,它对答案的贡献是 $(n-pos[i][k]+1) \cdot (pos[i][k]-pos[i][k-1])$。

我们可以对 $a[1 \sim n]$ 分解质因数,然后更新相应的 $pos[i][k]$。

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e6+; int n,a[maxn];
vector<int> pos[maxn];
void dec(int p)
{
int n=a[p];
for(int i=;i*i<=n;i++)
{
if(n%i==)
{
pos[i].push_back(p);
while(n%i==) n/=i;
}
}
if(n>) pos[n].push_back(p);
}
int main()
{
for(int i=;i<maxn;i++) pos[i].push_back(); scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
dec(i);
} ll ans=;
for(int i=;i<maxn;i++)
{
for(int k=;k<pos[i].size();k++)
ans+=(ll)(n-pos[i][k]+)*(pos[i][k]-pos[i][k-]);
}
cout<<ans<<endl;
}

分解质因数板子:

vector<int> dec(int n)
{
vector<int> p;
for(int i=;i*i<=n;i++)
{
if(n%i==)
{
p.push_back(i);
while(n%i==) n/=i;
}
}
if(n>) p.push_back(n);
return p;
}

交了一发,大概700ms多点过了,那我们能否加快一下速度呢?

我们可以先用线性筛筛出 $[1,1e6]$ 的素数,然后再做分解质因数:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e6+; int n,a[maxn];
vector<int> pos[maxn]; const int MAX=1e6;
int tot,prime[MAX/];
bool isPrime[MAX+];
void Screen() //欧拉筛
{
tot=;
memset(isPrime,,sizeof(isPrime));
isPrime[]=isPrime[]=;
for(int i=;i<=MAX;i++)
{
if(isPrime[i]) prime[tot++]=i;
for(int j=;j<tot;j++)
{
if(i*prime[j]>MAX) break;
isPrime[i*prime[j]]=;
if(i%prime[j]==) break;
}
}
} void dec(int p)
{
int n=a[p];
for(int i=;i<tot && prime[i]*prime[i]<=n;i++)
{
if(n%prime[i]==)
{
pos[prime[i]].push_back(p);
while(n%prime[i]==) n/=prime[i];
}
}
if(n>) pos[n].push_back(p);
}
int main()
{
Screen();
for(int i=;i<tot;i++) pos[prime[i]].push_back(); scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
dec(i);
} ll ans=;
for(int i=;i<tot;i++)
{
for(int k=;k<pos[prime[i]].size();k++)
ans+=(ll)(n-pos[prime[i]][k]+)*(pos[prime[i]][k]-pos[prime[i]][k-]);
}
printf("%I64d\n",ans);
}

跑了大概400ms,还是快了不少的。

Gym 101981J - Prime Game - [数学题][线性筛+分解质因数][2018-2019 ACM-ICPC Asia Nanjing Regional Contest Problem J]的更多相关文章

  1. Gym - 101981J The 2018 ICPC Asia Nanjing Regional Contest J.Prime Game 计数

    题面 题意:1e6的数组(1<a[i]<1e6),     mul (l,r) =l × (l+1) ×...× r,  fac(l,r) 代表 mul(l,r) 中不同素因子的个数,求s ...

  2. Gym 101981G - Pyramid - [打表找规律][2018-2019 ACM-ICPC Asia Nanjing Regional Contest Problem G]

    题目链接:http://codeforces.com/gym/101981/attachments The use of the triangle in the New Age practices s ...

  3. Gym 101981I - Magic Potion - [最大流][2018-2019 ACM-ICPC Asia Nanjing Regional Contest Problem I]

    题目链接:http://codeforces.com/gym/101981/attachments There are n heroes and m monsters living in an isl ...

  4. Gym 101981K - Kangaroo Puzzle - [玄学][2018-2019 ACM-ICPC Asia Nanjing Regional Contest Problem K]

    题目链接:http://codeforces.com/gym/101981/problem/K Your friend has made a computer video game called “K ...

  5. Gym - 101981K The 2018 ICPC Asia Nanjing Regional Contest K.Kangaroo Puzzle 暴力或随机

    题面 题意:给你1个20*20的格子图,有的是障碍有的是怪,你可以每次指定上下左右的方向,然后所有怪都会向那个方向走, 如果2个怪撞上了,就融合在一起,让你给不超过5w步,让所有怪都融合 题解:我们可 ...

  6. Gym - 101981M The 2018 ICPC Asia Nanjing Regional Contest M.Mediocre String Problem Manacher+扩增KMP

    题面 题意:给你2个串(长度1e6),在第一个串里找“s1s2s3”,第二个串里找“s4”,拼接后,是一个回文串,求方案数 题解:知道s1和s4回文,s2和s3回文,所以我们枚举s1的右端点,s1的长 ...

  7. Gym - 101981G The 2018 ICPC Asia Nanjing Regional Contest G.Pyramid 找规律

    题面 题意:数一个n阶三角形中,有多少个全等三角形,n<=1e9 题解:拿到题想找规律,手画开始一直数漏....,最后还是打了个表 (打表就是随便定个点为(0,0),然后(2,0),(4,0), ...

  8. Gym - 101981I The 2018 ICPC Asia Nanjing Regional Contest I.Magic Potion 最大流

    题面 题意:n个英雄,m个怪兽,第i个英雄可以打第i个集合里的一个怪兽,一个怪兽可以在多个集合里,有k瓶药水,每个英雄最多喝一次,可以多打一只怪兽,求最多打多少只 n,m,k<=500 题解:显 ...

  9. Gym - 101981D The 2018 ICPC Asia Nanjing Regional Contest D.Country Meow 最小球覆盖

    题面 题意:给你100个三维空间里的点,让你求一个点,使得他到所有点距离最大的值最小,也就是让你找一个最小的球覆盖掉这n个点 题解:红书模板题,这题也因为数据小,精度也不高,所以也可以用随机算法,模拟 ...

随机推荐

  1. 市场风险~VaR的概述

    1.概念理解 VaR的含义:Value at Risk 按字面的解释就是"处于风险状态的价值",可译为受险价值.在险价值.风险价值等. 通常解释为:VaR是在一定置信水平和一定持有 ...

  2. 理解 CI 和 CD 之间的区别(翻译)

    博客搬迁至https://blog.wangjiegulu.com RSS订阅:https://blog.wangjiegulu.com/feed.xml 原文链接:https://blog.wang ...

  3. Introducing DataFrames in Apache Spark for Large Scale Data Science(中英双语)

    文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame ...

  4. Linux服务器CPU使用率较低但负载较高

    CPU使用率较低但负载较高 问题描述 Linux 系统没有业务程序运行,通过 top 观察,类似如下图所示,CPU 很空闲,但是 load average 却非常高,如下图所示. 处理办法 load ...

  5. [moosefs] storage class

    chapter 1 moosefs 3.1 storage class 功能的介绍 1.1 什么是storage class 在moosefs中,storage class允许指定文件的chunks存 ...

  6. 【原创 Hadoop&Spark 动手实践 5】Spark 基础入门,集群搭建以及Spark Shell

    Spark 基础入门,集群搭建以及Spark Shell 主要借助Spark基础的PPT,再加上实际的动手操作来加强概念的理解和实践. Spark 安装部署 理论已经了解的差不多了,接下来是实际动手实 ...

  7. [转]论SOA架构的几种主要开发方式

    面向服务架构soa以其独特的优势越来越受到企业的重视,它可以根据需求通过网络对松散耦合的粗粒度应用组件进行分布式部署.组合和使用.服务层是SOA的基础,可以直接被应用调用,从而有效控制系统中与软件代理 ...

  8. ios app qbw.plist demo

    qbw.plist <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE plist PUBLIC ...

  9. 释放锁标记只有在Synchronized代码结束或者调用wait()。

    释放锁标记只有在Synchronized代码结束或者调用wait(). 注意锁标记是自己不会自动释放,必须有通知. 注意在程序中判定一个条件是否成立时要注意使用WHILE要比使用IF要严密. WHIL ...

  10. 安装 VMWare ESXi 6.7:VMB: 548: Unsupported CPU:6.7版本的ESXi 不支持 某些cpu了

    如题,谨记! 升级是双面刃! 用6.5--版本,即可.