机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

同样是预测房价问题  如果有多个特征值

那么这种情况下  假设h表示为 

公式可以简化为

两个矩阵相乘   其实就是所有参数和变量相乘再相加  所以矩阵的乘法才会是那样

那么他的代价函数就是

同样是寻找使J最小的一系列参数

python代码为

比如这种     那么X是[1,2,3]   y也是[1,2,3]   那么令theta0 = 0  theta1 = 1   这个函数返回值为0最小      theta0 = 0 theta1=0的话  返回值是2.333

要考虑是否需要特征缩放,特征缩放就是特征分配不均时   会导致梯度下降耗费更多  为了让梯度下降更快

所以

如何选择学习率α呢

梯度下降算法的每次迭代受到学习率的影响,如果学习率 过小,则达到收敛所需的迭代次数会非常高,如果学习率过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。

通常可以考虑尝试些学习率:0.01,0.03,0.3,1,3,10

而有的时候线性回归并不适用于所有的模型,这个时候我们要考虑用多项式模型

这个时候特征缩放就很重要

梯度下降  线性回归的python代码

# -*- coding=utf8 -*-

import math;

def sum_of_gradient(x, y, thetas):
"""计算梯度向量,参数分别是x和y轴点坐标数据以及方程参数"""
m = len(x);
grad0 = 1.0 / m * sum([(thetas[0] + thetas[1] * x[i] - y[i]) for i in range(m)])
grad1 = 1.0 / m * sum([(thetas[0] + thetas[1] * x[i] - y[i]) * x[i] for i in range(m)])
return [grad0, grad1];

def step(thetas, direction, step_size):
"""move step_size in the direction from thetas"""
return [thetas_i + step_size * direction_i
for thetas_i, direction_i in zip(thetas, direction)]

def distance(v, w):
"""两点的距离"""
return math.sqrt(squared_distance(v, w))

def squared_distance(v, w):
vector_subtract = [v_i - w_i for v_i, w_i in zip(v, w)]
return sum(vector_subtract_i * vector_subtract_i for vector_subtract_i, vector_subtract_i
in zip(vector_subtract, vector_subtract))

def gradient_descent(stepSize, x, y, tolerance=0.000000001, max_iter=100000):
"""梯度下降"""
iter = 0
# initial theta
thetas = [0, 0];
# Iterate Loop
while True:
gradient = sum_of_gradient(x, y, thetas);

next_thetas = step(thetas, gradient, stepSize);

if distance(next_thetas, thetas) < tolerance: # stop if we're converging
break
thetas = next_thetas # continue if we're not

iter += 1 # update iter

if iter == max_iter:
print 'Max iteractions exceeded!'
break;

return thetas

x = [1, 2, 3];
y = [5, 9, 13];
stepSize = 0.001;
t0, t1 = gradient_descent(-stepSize, x, y);
print t0, " ", t1;

线性回归还有一种更简单的  就是正规方程

这个是用数学推导出来的

两者对比: 

机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)的更多相关文章

  1. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  2. 机器学习第4课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).

  3. 斯坦福第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  4. Ng第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  5. python实现多变量线性回归(Linear Regression with Multiple Variables)

    本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,..., ...

  6. 4、、多变量线性回归(Linear Regression with Multiple Variables)

    4.1 多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...xn) 增添更多特征后, ...

  7. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  8. 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归

    Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...

  9. 斯坦福机器学习视频笔记 Week2 多元线性回归 Linear Regression with Multiple Variables

    相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(fea ...

随机推荐

  1. 【java】模板方法设计模式

    模板方法:在定义功能时,功能一部分是确认的,另一部分是不确认的或者后续会变化的.这时可以把不确定的部分暴露出去,定义成抽象类或者接口,由子类来完成. abstract class GetDuring ...

  2. 黄聪:微信URL Scheme,URL唤起微信

    微信URL Scheme 在外部浏览器中,可以通过<a href="weixin://">打开微信APP 也可以通过加一些参数,打开微信APP里的指定页面 <a ...

  3. 小程序https请求,http网站升到https

    最近开发小程序,因为以前只写过小程序的前端没注意接口,现在才发现原来所有的接口都必须使用https协议了,马上研究了一波,顺便也想给自己的博客升成https的. 申请免费证书 哈哈没办法就是喜欢免费的 ...

  4. python if not

    判断是否为None的情况 if not x if x is None if not x is None if x is not None`是最好的写法,清晰,不会出现错误,以后坚持使用这种写法. 使用 ...

  5. Pycharm2018的激活方法或破解方法(必须加host)

    修改hosts文件将0.0.0.0 account.jetbrains.com添加到hosts文件最后,注意hosts文件无后缀,如果遇到无法修改或权限问题,可以采用覆盖的方法去替换hosts文件 修 ...

  6. kubernetes学习笔记之十二:资源指标API及自定义指标API

    第一章.前言 以前是用heapster来收集资源指标才能看,现在heapster要废弃了从1.8以后引入了资源api指标监视 资源指标:metrics-server(核心指标) 自定义指标:prome ...

  7. 时间的转化 js

    php 和java是不一样的 PHP 需要先乘1000 java  不需要 因为PHP传过来的是十位数 java传过来是十三位数 function formatDate() { var now = n ...

  8. uva-10245-分治

    题意:数组二维空间内的点,求最近的俩个点的距离. 根据x排序,求左部分的最近距离,右部分最近距离,然后以中点,当前距离为半径,计算所有的点距离. #include <string> #in ...

  9. PHP安装Commposer

    一先把php加到环境变量里面测试 看一下版本号: 二,composer得安装注意安装的时候 php必须在5.59以上版本,openssl的扩展开启,pdo的扩展开启,mbstring的扩展开启 1,下 ...

  10. leetcode10

    class Solution { public boolean isMatch(String s, String p) { if (s == null || p == null) { return f ...