机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

同样是预测房价问题  如果有多个特征值

那么这种情况下  假设h表示为 

公式可以简化为

两个矩阵相乘   其实就是所有参数和变量相乘再相加  所以矩阵的乘法才会是那样

那么他的代价函数就是

同样是寻找使J最小的一系列参数

python代码为

比如这种     那么X是[1,2,3]   y也是[1,2,3]   那么令theta0 = 0  theta1 = 1   这个函数返回值为0最小      theta0 = 0 theta1=0的话  返回值是2.333

要考虑是否需要特征缩放,特征缩放就是特征分配不均时   会导致梯度下降耗费更多  为了让梯度下降更快

所以

如何选择学习率α呢

梯度下降算法的每次迭代受到学习率的影响,如果学习率 过小,则达到收敛所需的迭代次数会非常高,如果学习率过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。

通常可以考虑尝试些学习率:0.01,0.03,0.3,1,3,10

而有的时候线性回归并不适用于所有的模型,这个时候我们要考虑用多项式模型

这个时候特征缩放就很重要

梯度下降  线性回归的python代码

# -*- coding=utf8 -*-

import math;

def sum_of_gradient(x, y, thetas):
"""计算梯度向量,参数分别是x和y轴点坐标数据以及方程参数"""
m = len(x);
grad0 = 1.0 / m * sum([(thetas[0] + thetas[1] * x[i] - y[i]) for i in range(m)])
grad1 = 1.0 / m * sum([(thetas[0] + thetas[1] * x[i] - y[i]) * x[i] for i in range(m)])
return [grad0, grad1];

def step(thetas, direction, step_size):
"""move step_size in the direction from thetas"""
return [thetas_i + step_size * direction_i
for thetas_i, direction_i in zip(thetas, direction)]

def distance(v, w):
"""两点的距离"""
return math.sqrt(squared_distance(v, w))

def squared_distance(v, w):
vector_subtract = [v_i - w_i for v_i, w_i in zip(v, w)]
return sum(vector_subtract_i * vector_subtract_i for vector_subtract_i, vector_subtract_i
in zip(vector_subtract, vector_subtract))

def gradient_descent(stepSize, x, y, tolerance=0.000000001, max_iter=100000):
"""梯度下降"""
iter = 0
# initial theta
thetas = [0, 0];
# Iterate Loop
while True:
gradient = sum_of_gradient(x, y, thetas);

next_thetas = step(thetas, gradient, stepSize);

if distance(next_thetas, thetas) < tolerance: # stop if we're converging
break
thetas = next_thetas # continue if we're not

iter += 1 # update iter

if iter == max_iter:
print 'Max iteractions exceeded!'
break;

return thetas

x = [1, 2, 3];
y = [5, 9, 13];
stepSize = 0.001;
t0, t1 = gradient_descent(-stepSize, x, y);
print t0, " ", t1;

线性回归还有一种更简单的  就是正规方程

这个是用数学推导出来的

两者对比: 

机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)的更多相关文章

  1. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  2. 机器学习第4课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).

  3. 斯坦福第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  4. Ng第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  5. python实现多变量线性回归(Linear Regression with Multiple Variables)

    本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,..., ...

  6. 4、、多变量线性回归(Linear Regression with Multiple Variables)

    4.1 多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...xn) 增添更多特征后, ...

  7. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  8. 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归

    Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...

  9. 斯坦福机器学习视频笔记 Week2 多元线性回归 Linear Regression with Multiple Variables

    相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(fea ...

随机推荐

  1. zombodb 配置设置

    主要是关于es 集群地址以及分片,复制副本的配置,配置主要在postgresql.conf,当然我们可以在函数中指定 postgresql.conf 级别的配置 es 配置 格式 zdb.defaul ...

  2. C#的发展历程 -- 系列介绍

    C#的发展历程第五 - C# 7开始进入快速迭代道路 C#与C++的发展历程第四 - C#6的新时代 C#与C++的发展历程第三 - C#5.0异步编程巅峰 C#与C++的发展历程第二 - C#4.0 ...

  3. 如何在hanlp词典中手动添加未登录词

     我们在使用hanlp词典进行分词的时候,难免会出现分词不准确的情况,原因是由于内置词典中并没有收录当前的这个词,也就是我们所说的未登录词,只要把这个词加入到内置词典中就可以解决类似问题,如何操作,下 ...

  4. ios-微信支付登录分享-notification通知

    // //  AppDelegate.m //  NewAppBase // //  Created by ENERGY on 2018/5/17. //  Copyright © 2018年 ENE ...

  5. Linux vim快捷键

    1  替换    r  替换  先按r再按要替换的内容 2  按yy复制当前行  按p是粘贴 3 # add at 18-10-25 #-------------------------------- ...

  6. 三元运算&匿名函数lambda

    lambda # 语法: # 参数 : 返回值 # 1.不带参数的lambda表达式 def func(): return '开挂的人生不需要解释' func = lambda : '开挂的人上不需要 ...

  7. 3-hive、sqoop

    1.HIVE 1.交互命令 use db_name; create database db_name //创建数据库 create database if not exists db_name //创 ...

  8. WPF 重写ListBox(透明效果)

    <UserControl d:DesignHeight="460" d:DesignWidth="300" x:Name="UCcontrol& ...

  9. 01 Python初识

    基础: 1.后缀名是py       ATT: 单个文件执行,后缀无所谓 2.两种执行方式 终端 python+文件路径 解释器内部: 直接执行 3.解释器路径: #/usr/bin/env pyth ...

  10. 操作系统切换CPU的方式

    操作系统切换CPU的方式 1 IO等待切换. 2 时间轮询切换,也就是如果没有IO等待的情况下,就会有时间轮询切换,不让CPU一直处理一个任务   CPU的处理速度是纳秒级别的,所有我们可以同时听歌, ...