机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)
机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)
同样是预测房价问题 如果有多个特征值


那么这种情况下 假设h表示为 
公式可以简化为
两个矩阵相乘 其实就是所有参数和变量相乘再相加 所以矩阵的乘法才会是那样
那么他的代价函数就是
同样是寻找使J最小的一系列参数
python代码为

比如这种 那么X是[1,2,3] y也是[1,2,3] 那么令theta0 = 0 theta1 = 1 这个函数返回值为0最小 theta0 = 0 theta1=0的话 返回值是2.333
要考虑是否需要特征缩放,特征缩放就是特征分配不均时 会导致梯度下降耗费更多 为了让梯度下降更快
所以
如何选择学习率α呢
梯度下降算法的每次迭代受到学习率的影响,如果学习率 过小,则达到收敛所需的迭代次数会非常高,如果学习率过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。
通常可以考虑尝试些学习率:0.01,0.03,0.3,1,3,10
而有的时候线性回归并不适用于所有的模型,这个时候我们要考虑用多项式模型

这个时候特征缩放就很重要
梯度下降 线性回归的python代码
# -*- coding=utf8 -*-
import math;
def sum_of_gradient(x, y, thetas):
"""计算梯度向量,参数分别是x和y轴点坐标数据以及方程参数"""
m = len(x);
grad0 = 1.0 / m * sum([(thetas[0] + thetas[1] * x[i] - y[i]) for i in range(m)])
grad1 = 1.0 / m * sum([(thetas[0] + thetas[1] * x[i] - y[i]) * x[i] for i in range(m)])
return [grad0, grad1];
def step(thetas, direction, step_size):
"""move step_size in the direction from thetas"""
return [thetas_i + step_size * direction_i
for thetas_i, direction_i in zip(thetas, direction)]
def distance(v, w):
"""两点的距离"""
return math.sqrt(squared_distance(v, w))
def squared_distance(v, w):
vector_subtract = [v_i - w_i for v_i, w_i in zip(v, w)]
return sum(vector_subtract_i * vector_subtract_i for vector_subtract_i, vector_subtract_i
in zip(vector_subtract, vector_subtract))
def gradient_descent(stepSize, x, y, tolerance=0.000000001, max_iter=100000):
"""梯度下降"""
iter = 0
# initial theta
thetas = [0, 0];
# Iterate Loop
while True:
gradient = sum_of_gradient(x, y, thetas);
next_thetas = step(thetas, gradient, stepSize);
if distance(next_thetas, thetas) < tolerance: # stop if we're converging
break
thetas = next_thetas # continue if we're not
iter += 1 # update iter
if iter == max_iter:
print 'Max iteractions exceeded!'
break;
return thetas
x = [1, 2, 3];
y = [5, 9, 13];
stepSize = 0.001;
t0, t1 = gradient_descent(-stepSize, x, y);
print t0, " ", t1;
线性回归还有一种更简单的 就是正规方程
这个是用数学推导出来的
两者对比: 

机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)的更多相关文章
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- 机器学习第4课:多变量线性回归(Linear Regression with Multiple Variables)
4.1 多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).
- 斯坦福第四课:多变量线性回归(Linear Regression with Multiple Variables)
4.1 多维特征 4.2 多变量梯度下降 4.3 梯度下降法实践 1-特征缩放 4.4 梯度下降法实践 2-学习率 4.5 特征和多项式回归 4.6 正规方程 4.7 正规方程及不可逆性 ...
- Ng第四课:多变量线性回归(Linear Regression with Multiple Variables)
4.1 多维特征 4.2 多变量梯度下降 4.3 梯度下降法实践 1-特征缩放 4.4 梯度下降法实践 2-学习率 4.5 特征和多项式回归 4.6 正规方程 4.7 正规方程及不可逆性 ...
- python实现多变量线性回归(Linear Regression with Multiple Variables)
本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,..., ...
- 4、、多变量线性回归(Linear Regression with Multiple Variables)
4.1 多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...xn) 增添更多特征后, ...
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归
Gradient Descent for Multiple Variables [1]多变量线性模型 代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...
- 斯坦福机器学习视频笔记 Week2 多元线性回归 Linear Regression with Multiple Variables
相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(fea ...
随机推荐
- Java虚拟机的内部体系结构
1.Java程序执行流程 Java程序的执行依赖于编译环境和运行环境.源码代码转变成可执行的机器代码,由下面的流程完成: Java技术的核心就是Java虚拟机,因为所有的Java程序都在虚拟机上运行. ...
- How to load custom styles at runtime (不会翻译,只有抄了 )
原文 :http://blogs.embarcadero.com/sarinadupont/2013/10/16/how-to-load-custom-styles-at-runtime/ How t ...
- RGB格式图像转化为HSV格式
注:在阴影检测算法中经常需要将RGB格式的图像转化为HSV格式,对于阴影区域而言,它的色度和饱和度相对于原图像而言变化不大,主要是亮度信息变化较大,,将RGB格式转化为HSV格式,就可以得到H.S.V ...
- DHCP的搭建
挂载光盘 yum –y install dhcp cat /etc/dhcp/dhcpd.conf 配置文件到 /usr/share/doc/dhcp*/dhcpd.conf.sample 这是dhc ...
- sequelize的mssql配置
配置文件 development: { username: process.env.LOCAL_USERNAME, password: process.env.LOCAL_PASSWORD, data ...
- docker容器内存占用 之 系统cache,docker下java的内存该如何配置
缘起: 监控(docker stats)显示容器内存被用完了,进入容器瞅了瞅,没有发现使用内存多的进程,使用awk等工具把容器所有进程使用的内存加起来看看,距离用完还远了去了,何故? 分析: 该不会d ...
- [转]Java事件处理机制- 事件监听器的四种实现方式
原文来自http://stefan321.iteye.com/blog/345221 自身类作为事件监听器 外部类作为事件监听器 匿名内部类作为事件监听器 内部类作为事件监听器 自身类作为事件监听器: ...
- IIC时序详解
Verilog IIC通信实验笔记 Write by Gianttank 我实验的是 AT24C08的单字节读,单字节写,页读和页写,在高于3.3V系统中他的通信速率最高400KHZ的,我实验里用的是 ...
- HTML/CSS基础知识(四)
WEB标准和W3C的理解与认识 Web标准是一系列标准的集合. 网页主要由三部分组成:结构(Structure).表现(Presentation)和行为(Behavior). 对应的标准也分三方面:结 ...
- 1DAY centos 7.4 u盘安装、网络安装
0xff01 重庆大学开源下载centos 1.下载地址 http://mirrors.cqu.edu.cn/CentOS/7.4.1708/isos/x86_64/ 选择 CentOS-7-x86 ...