【BZOJ】4517 [Sdoi2016]排列计数(数学+错排公式)
题目
传送门:QWQ
分析
$ O(nlogn) $预处理出阶乘和阶乘的逆元,然后求组合数就成了$O(1)$了。
最后再套上错排公式:$ \huge d[i]=(i-1) \times (d[i-1] + d[i-2])$其中$ d[i] $表示把i个数错排的方式数量,其中$d[1]=0,d[2]=1$
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MOD = 1e9+;
const int maxn = ;
ll inv[maxn+], jc[maxn+], jc_inv[maxn+], d[maxn+];
void exgcd(ll a,ll b,ll& x,ll& y) {
if(!b) {x=;y=;return;}
exgcd(b,a%b,y,x); y-=x*(a/b);
}
ll inverse(ll a) {
ll x,y;
exgcd(a,MOD,x,y);
x = (x+MOD)%MOD;
return x;
}
void init() {
jc[]=; d[]=; d[]=; jc_inv[]=;
for(int i=;i<maxn;i++) {
jc[i] = (jc[i-]*ll(i)) % MOD;
jc_inv[i] = inverse(jc[i]);
if(i>) d[i] = ((i-) *(d[i-] + d[i-])) % MOD;
}
} ll C(ll n, ll m) {
return jc[n] * jc_inv[m] % MOD * jc_inv[n-m] % MOD;
}
int main() {
init();
int t; scanf("%d",&t);
while(t--) {
ll n, m; scanf("%lld%lld",&n,&m);
ll ans = C(n,m) * d[n-m] % MOD;
printf("%lld\n",ans);
}
}
【BZOJ】4517 [Sdoi2016]排列计数(数学+错排公式)的更多相关文章
- BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)
Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...
- 数学(错排):BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 693 Solved: 434[Submit][Status ...
- BZOJ 4517: [Sdoi2016]排列计数 错排公式
4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...
- BZOJ 4517: [Sdoi2016]排列计数 错排+逆元
4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...
- BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 911 Solved: 566[Submit][Status ...
- BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]
4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...
- Bzoj 4517: [Sdoi2016]排列计数(排列组合)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MB Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ...
- 【BZOJ4517】[Sdoi2016]排列计数 组合数+错排
[BZOJ4517][Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值 ...
- 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)
P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...
- BZOJ 4517: [Sdoi2016]排列计数 错排 + 组合
从 $n$ 个数中选 $m$ 个不错排,那就是说 $n-m$ 个数是错排的. 用组合数乘一下就好了. Code: #include <cstdio> #include <algori ...
随机推荐
- vim/vi用法总结
第一章:安装: 在命令行运行vim,如果找不到程序,需要自己安装. 1.1 下载 从官方网站ftp://ftp.vim.org/pub/vim/unix/中选择一个版本下载,我这里使用的是vim-7. ...
- 配置动态加载模块和js分模块打包,生产环境和开发环境公共常量配置
1. 话不多少 先上代码: route.js // 引用模板 分模块编译 const main = r => require.ensure([], () => r(require('. ...
- HDU 1592 Half of and a Half(大数)
Half of and a Half Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- bug20170125
1s定时请求接口,接口不响应(接口挂掉),浏览器崩溃
- Windows-CreateProcess-fdwCreate
DEBUG_PROCESS: DEBUG_ONLY_THIS_PROCESS: CREATE_SUSPENDED: DETACHED_PROCESS: CREATE_NEW_CONSOLE: CREA ...
- ssh 免 密码登录另一台机器 和 secureCRT的乱码问题
PS: 就是你把密钥生成好以后,放入B机器中,再登录的时候就已经有了所以就不用验证了 ========================================================= ...
- Ribbon Status Bar
https://documentation.devexpress.com/#WindowsForms/CustomDocument2498 官方文档说明 A Ribbon Status Bar (Ri ...
- Linux下的Nginx、php、mysql、apache部署
待补充,先搞几个博客链接: https://www.cnblogs.com/Candies/p/8282934.html http://sujianjob.com/2017/12/18/yum%E5% ...
- tomcat源码阅读之单点登录
一.SSO概念: 单点登录,Single Sign-On,简写为 SSO,是一个用户认证的过程,允许用户一次性进行认证后,就可访问系统中不同的应用:而无需要访问每个应用时,都重新输入用户和密码. 实现 ...
- 【转】解决Win7字体模糊不清晰的最佳办法
原文网址:http://blog.sina.com.cn/s/blog_3d5f68cd0100ldtp.html 相信初次用win7的朋友,都会遇到字体不清晰的问题,有很多人因为这个问题而放弃使用w ...