Yolov3-darknet 内容解析

YOLOv3是到目前为止,速度和精度最均衡的目标检测网络。通过多种先进方法的融合,将YOLO系列的短板(速度很快,不擅长检测小物体等)全部补齐。达到了令人惊艳的效果和拔群的速度。

多标签分类预测

在YOLO9000[14]之后,我们的系统使用维度聚类(dimension clusters )作为anchor boxes来预测边界框,网络为每个边界框预测4个坐标。

在YOLOv3[15]中使用逻辑回归预测每个边界框(bounding box)的对象分数。 如果先前的边界框比之前的任何其他边界框重叠ground truth对象,则该值应该为1。如果以前的边界框不是最好的,但是确实将ground truth对象重叠了一定的阈值以上,我们会忽略这个预测,按照进行。我们使用阈值0.5。与YOLOv2不同,我们的系统只为每个ground truth对象分配一个边界框。如果先前的边界框未分配给grounding box对象,则不会对坐标或类别预测造成损失。

在YOLOv3中,每个框使用多标签分类来预测边界框可能包含的类。该算法不使用softmax,因为它对于高性能没有必要,因此YOLOv3使用独立的逻辑分类器。在训练过程中,我们使用二元交叉熵损失来进行类别预测。对于重叠的标签,多标签方法可以更好地模拟数据。

跨尺度预测

YOLOv3采用多个尺度融合的方式做预测。原来的YOLO v2有一个层叫:passthrough layer,假设最后提取的feature map的size是13*13,那么这个层的作用就是将前面一层的26*26的feature map和本层的13*13的feature map进行连接,有点像ResNet。这样的操作也是为了加强YOLO算法对小目标检测的精确度。这个思想在YOLO v3中得到了进一步加强,在YOLO v3中采用类似FPN的上采样(upsample)和融合做法(最后融合了3个scale,其他两个scale的大小分别是26*26和52*52),在多个scale的feature map上做检测,对于小目标的检测效果提升还是比较明显的。虽然在YOLO v3中每个网格预测3个边界框,看起来比YOLO v2中每个grid cell预测5个边界框要少,但因为YOLO v3采用了多个尺度的特征融合,所以边界框的数量要比之前多很多。

网络结构改变

YOLO v3使用新的网络来实现特征提取。在Darknet-19中添加残差网络的混合方式,使用连续的3×3和1×1卷积层,但现在也有一些shortcut连接,YOLO v3将其扩充为53层并称之为Darknet-53。

reference

https://zhuanlan.zhihu.com/p/37668951

YOLOv3-darknet 内容解析的更多相关文章

  1. YOLOv2-darknet 内容解析

    目录 YOLOv2-darknet 内容解析 1. 改进之处 2. Better 3. Faster 4. Stronger 5. 总结 reference YOLOv2-darknet 内容解析 1 ...

  2. gradle相关配置内容解析

    gradle 项目的构建工具,基于groovy语言.主要用于管理依赖包. as中一般将gradle下载在C:\Documents and Settings<用户名>.gradle\wrap ...

  3. Android 之内容提供者 内容解析者 内容观察者

    contentProvider:ContentProvider在Android中的作用是对外提供数据,除了可以为所在应用提供数据外,还可以共享数据给其他应用,这是Android中解决应用之间数据共享的 ...

  4. YOLOv1-darknet 内容解析

    目录 YOLOv1-darknet 内容解析 1. 核心思想 2. 特点 3. 缺点 4. 算法流程 5. 详细内容 6. 主要参考 YOLOv1-darknet 内容解析 1. 核心思想 目标检测分 ...

  5. pytorch实现yolov3(2) 配置文件解析及各layer生成

    配置文件 配置文件yolov3.cfg定义了网络的结构 .... [convolutional] batch_normalize=1 filters=64 size=3 stride=2 pad=1 ...

  6. JVM系列文章(三):Class文件内容解析

    作为一个程序猿,只知道怎么用是远远不够的.起码,你须要知道为什么能够这么用.即我们所谓底层的东西. 那究竟什么是底层呢?我认为这不能一概而论.以我如今的知识水平而言:对于Web开发人员,TCP/IP. ...

  7. Web 前端性能优化相关内容解析

    Web 前端性能优化相关内容,来源于<Google官方网页载入速度检测工具PageSpeed Insights 使用教程>一文中PageSpeed Insights 的相关说明.大家可以对 ...

  8. Web 前端性能优化相关内容解析[转]

    Web 前端性能优化相关内容,来源于<Google官方网页载入速度检测工具PageSpeed Insights 使用教程>一文中PageSpeed Insights 的相关说明.大家可以对 ...

  9. 爬虫实战【6】Ajax内容解析-今日头条图集

    Ajax技术 AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). Ajax并不是新的编程语言,而是一种使用现有标准的新方法,当然 ...

随机推荐

  1. 日期 date +%F-%T-%N

    date +%F-%T-%N 2016-03-24-14:40:13-997433641 %%   a literal %  %a   locale's abbreviated weekday nam ...

  2. Andrew Ng-ML-第十二章-机器学习系统设计

    1.确定执行的优先级 图1.邮件垃圾分类举例 选择100个单词作为指示是否是垃圾邮件的指标,将这些单词作为特征向量,只用0/1表示,出现多次也只用1表示,特征变量用来表示邮件. 通常情况下,会选择训练 ...

  3. 使用Python2.7 GET Onenet平台的数据

    效果 代码 # -*- coding: utf-8 -*- """ ------------------------------------------------- F ...

  4. ubuntu vim python配置

    参考https://www.cnblogs.com/cjy15639731813/p/5886158.html 但是后面打开文件的时候会报错,参考https://blog.csdn.net/jeff_ ...

  5. Python Pandas找到缺失值的位置

    python pandas判断缺失值一般采用 isnull(),然而生成的却是所有数据的true/false矩阵,对于庞大的数据dataframe,很难一眼看出来哪个数据缺失,一共有多少个缺失数据,缺 ...

  6. Floyd 判圈算法

    Floyd 判圈算法 摘自维基百科, LeetCode 上 141题 Linked List Cycle 用到这个, 觉得很有意思. 记录一下. 链接: https://zh.wikipedia.or ...

  7. ReactNative前端开发者

    ReactNative前端开发者 文档版本0.0.2 Author: Necfol 说明: 本文档用于指导前端React Native的开发,如需开发其他其他框架应用,不适用本文档 前期准备 Reac ...

  8. 软件包管理:yum在线管理-yum命令

    只要我们的电脑可以接入互联网,那么yum源就是配好的,yum命令可以直接使用. 列出的是服务器上全部的rpm包. 包名,包全名的概念只在rpm手动管理时有用. 关键字主要指包名,只要知道了关键字就可以 ...

  9. Twitter OA prepare: even sum pairs

    思路:无非就是扫描一遍记录奇数和偶数各自的个数,比如为M和N,然后就是奇数里面选两个.偶数里面选两个,答案就是M(M-1)/2 + N(N-1)/2

  10. GIC400简介

    GIC400是arm公司的中断控制IP,提供axi4接口,主要功能: 1)中断的使能(enable,mask); 中断的优先级(poriority);  中断的触发条件(level-sensitive ...