YOLOv3-darknet 内容解析
Yolov3-darknet 内容解析
YOLOv3是到目前为止,速度和精度最均衡的目标检测网络。通过多种先进方法的融合,将YOLO系列的短板(速度很快,不擅长检测小物体等)全部补齐。达到了令人惊艳的效果和拔群的速度。
多标签分类预测
在YOLO9000[14]之后,我们的系统使用维度聚类(dimension clusters )作为anchor boxes来预测边界框,网络为每个边界框预测4个坐标。
在YOLOv3[15]中使用逻辑回归预测每个边界框(bounding box)的对象分数。 如果先前的边界框比之前的任何其他边界框重叠ground truth对象,则该值应该为1。如果以前的边界框不是最好的,但是确实将ground truth对象重叠了一定的阈值以上,我们会忽略这个预测,按照进行。我们使用阈值0.5。与YOLOv2不同,我们的系统只为每个ground truth对象分配一个边界框。如果先前的边界框未分配给grounding box对象,则不会对坐标或类别预测造成损失。
在YOLOv3中,每个框使用多标签分类来预测边界框可能包含的类。该算法不使用softmax,因为它对于高性能没有必要,因此YOLOv3使用独立的逻辑分类器。在训练过程中,我们使用二元交叉熵损失来进行类别预测。对于重叠的标签,多标签方法可以更好地模拟数据。
跨尺度预测
YOLOv3采用多个尺度融合的方式做预测。原来的YOLO v2有一个层叫:passthrough layer,假设最后提取的feature map的size是13*13,那么这个层的作用就是将前面一层的26*26的feature map和本层的13*13的feature map进行连接,有点像ResNet。这样的操作也是为了加强YOLO算法对小目标检测的精确度。这个思想在YOLO v3中得到了进一步加强,在YOLO v3中采用类似FPN的上采样(upsample)和融合做法(最后融合了3个scale,其他两个scale的大小分别是26*26和52*52),在多个scale的feature map上做检测,对于小目标的检测效果提升还是比较明显的。虽然在YOLO v3中每个网格预测3个边界框,看起来比YOLO v2中每个grid cell预测5个边界框要少,但因为YOLO v3采用了多个尺度的特征融合,所以边界框的数量要比之前多很多。
网络结构改变
YOLO v3使用新的网络来实现特征提取。在Darknet-19中添加残差网络的混合方式,使用连续的3×3和1×1卷积层,但现在也有一些shortcut连接,YOLO v3将其扩充为53层并称之为Darknet-53。
reference
https://zhuanlan.zhihu.com/p/37668951
YOLOv3-darknet 内容解析的更多相关文章
- YOLOv2-darknet 内容解析
目录 YOLOv2-darknet 内容解析 1. 改进之处 2. Better 3. Faster 4. Stronger 5. 总结 reference YOLOv2-darknet 内容解析 1 ...
- gradle相关配置内容解析
gradle 项目的构建工具,基于groovy语言.主要用于管理依赖包. as中一般将gradle下载在C:\Documents and Settings<用户名>.gradle\wrap ...
- Android 之内容提供者 内容解析者 内容观察者
contentProvider:ContentProvider在Android中的作用是对外提供数据,除了可以为所在应用提供数据外,还可以共享数据给其他应用,这是Android中解决应用之间数据共享的 ...
- YOLOv1-darknet 内容解析
目录 YOLOv1-darknet 内容解析 1. 核心思想 2. 特点 3. 缺点 4. 算法流程 5. 详细内容 6. 主要参考 YOLOv1-darknet 内容解析 1. 核心思想 目标检测分 ...
- pytorch实现yolov3(2) 配置文件解析及各layer生成
配置文件 配置文件yolov3.cfg定义了网络的结构 .... [convolutional] batch_normalize=1 filters=64 size=3 stride=2 pad=1 ...
- JVM系列文章(三):Class文件内容解析
作为一个程序猿,只知道怎么用是远远不够的.起码,你须要知道为什么能够这么用.即我们所谓底层的东西. 那究竟什么是底层呢?我认为这不能一概而论.以我如今的知识水平而言:对于Web开发人员,TCP/IP. ...
- Web 前端性能优化相关内容解析
Web 前端性能优化相关内容,来源于<Google官方网页载入速度检测工具PageSpeed Insights 使用教程>一文中PageSpeed Insights 的相关说明.大家可以对 ...
- Web 前端性能优化相关内容解析[转]
Web 前端性能优化相关内容,来源于<Google官方网页载入速度检测工具PageSpeed Insights 使用教程>一文中PageSpeed Insights 的相关说明.大家可以对 ...
- 爬虫实战【6】Ajax内容解析-今日头条图集
Ajax技术 AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). Ajax并不是新的编程语言,而是一种使用现有标准的新方法,当然 ...
随机推荐
- python 基础 内置函数
内置参数 print(all([5,-1,5])) # 非0都是真 true print(all([0,-1,5])) # false print(any([1,0,5])) # 有一个数据为真,就为 ...
- 【剑指offer】跳台阶
一.题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 二.思路: 同斐波那契数列. 三.代码:
- 训练/验证/测试集设置;偏差/方差;high bias/variance;正则化;为什么正则化可以减小过拟合
1. 训练.验证.测试集 对于一个需要解决的问题的样本数据,在建立模型的过程中,我们会将问题的data划分为以下几个部分: 训练集(train set):用训练集对算法或模型进行训练过程: 验证集(d ...
- 2018-2019-2 网络对抗技术 20165324 Exp1:PC平台逆向破解
2018-2019-2 网络对抗技术 20165324 Exp1:PC平台逆向破解 实验: 要求: 掌握NOP, JNE, JE, JMP, CMP汇编指令的机器码(0.5分) 掌握反汇编与十六进制编 ...
- Winsock网络编程
Winsock是Windows下网络编程的标准接口.使用Winsock编程的步骤一般是比较固定的. 首先要包含头文件#include <WinSock2.h>,同时要添加WS2_32.li ...
- Look for the Air Jordan 32 in full family sizing
Following the release of the 'Rosso Corsa' colorway, Jordan Brand is now set to officially launch th ...
- 深入浅出TCP之listen
原文:http://blog.chinaunix.net/uid-29075379-id-3858844.html int listen(int fd, int backlog); 有几个概念需要在开 ...
- linux make configure make
开放源码:就是程序代码,写给人类看的程序语言,但机器并不认识,所以无法执行: 编译程序:将程序代码转译成为机器看得懂的语言,就类似编译者的角色: 可执行文件:经过编译程序变成二进制后机器看得懂所以可以 ...
- mysql5.7服务器The innodb_system data file 'ibdata1' must be writable导致无法启动服务器
现象如下:The innodb_system data file 'ibdata1' must be writable. 解决方案如下: 1.关闭mysqld进程: 2.删除配置文件中datadir所 ...
- Servlet—生命周期
首次访问 重复访问 换浏览器访问(说明在一次项目运行期间,servlet实例只会创建一个)