1) 数据输入和输出
WOW():查看Weka函数的参数。
Weka_control():设置Weka函数的参数。
read.arff():读Weka Attribute-Relation File Format (ARFF)格式的数据。
write.arff:将数据写入Weka Attribute-Relation File Format (ARFF)格式的文件。

2) 数据预处理
Normalize():无监督的标准化连续性数据。
Discretize():用MDL(Minimum Description Length)方法,有监督的离散化连续性数值数据。

3) 分类和回归
IBk():k最近邻分类
LBR():naive Bayes法分类
J48():C4.5决策树算法(决策树在分析各个属性时,是完全独立的)。
LMT():组合树结构和Logistic回归模型,每个叶子节点是一个Logistic回归模型,准确性比单独的决策树和Logistic回归方法要好。
M5P():M5 模型数算法,组合了树结构和线性回归模型,每个叶子节点是一个线性回归模型,因而可用于连续数据的回归。
DecisionStump():单层决策树算法,常被作为boosting的基本学习器。
SMO():支持向量机分类
AdaBoostM1():Adaboost M1方法。-W参数指定弱学习器的算法。
Bagging():通过从原始数据取样(用替换方法),创建多个模型。
LogitBoost():弱学习器采用了对数回归方法,学习到的是实数值
MultiBoostAB():AdaBoost 方法的改进,可看作AdaBoost 和 “wagging”的组合。
Stacking():用于不同的基本分类器集成的算法。
LinearRegression():建立合适的线性回归模型。
Logistic():建立logistic回归模型。
JRip():一种规则学习方法。
M5Rules():用M5方法产生回归问题的决策规则。
OneR():简单的1-R分类法。
PART():产生PART决策规则。

4) 聚类
Cobweb():这是种基于模型方法,它假设每个聚类的模型并发现适合相应模型的数据。不适合对大数据库进行聚类处理。
FarthestFirst():快速的近似的k均值聚类算法
SimpleKMeans():k均值聚类算法
XMeans():改进的k均值法,能自动决定类别数
DBScan():基于密度的聚类方法,它根据对象周围的密度不断增长聚类。它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义为一组“密度连接”的点集。

5)关联规则
Apriori():Apriori是关联规则领域里最具影响力的基
础算法,是一种广度优先算法,通过多次扫描数据库来获取支持度大于最小支持度的频繁项集。它的理论基础是频繁项集的两个单调性原则:频繁项集的任一子集一
定是频繁的;非频繁项集的任一超集一定是非频繁的。在海量数据的情况下,Apriori 算法的时间和空间成本非常高。
Tertius():Tertius算法。
6)预测和评估:
predict():根据分类或聚类结果预测新数据的类别
table():比较两个因子对象
evaluate_Weka_classifier():评估模型的执行,如:TP Rate,FP Rate,Precision,Recall,F-Measure。

weka中算法说明[转]的更多相关文章

  1. 用Apache Ant在Weka中嵌入新算法

    本文将介绍一种新的添加新的算法到Weka中的方法,国内的论坛基本都是通过IDE(Eclipse或NetBeans)编译,详细教程请见上一篇博客.经研究,发现国外的网站很流行用Ant这个方法,教程奉上. ...

  2. 在weka中添加libSVM或者HMM等新算法

    转:http://kasy-13.blog.163.com/blog/static/8214691420143226365887/ Weka的全名是怀卡托智能分析环境(Waikato Environm ...

  3. Weka中数据挖掘与机器学习系列之Weka Package Manager安装所需WEKA的附加算法包出错问题解决方案总结(八)

    不多说,直接上干货! Weka中数据挖掘与机器学习系列之Weka系统安装(四) Weka中数据挖掘与机器学习系列之Weka3.7和3.9不同版本共存(七) 情况1 对于在Weka里,通过Weka  P ...

  4. Weka中数据挖掘与机器学习系列之Weka系统安装(四)

    能来看我这篇博客的朋友,想必大家都知道,Weka采用Java编写的,因此,具有Java“一次编译,到处运行”的特性.支持的操作系统有Windows x86.Windows x64.Mac OS X.L ...

  5. Weka中数据挖掘与机器学习系列之Exploer界面(七)

    不多说,直接上干货! Weka的Explorer(探索者)界面,是Weka的主要图形化用户界面,其全部功能都可通过菜单选择或表单填写进行访问.本博客将详细介绍Weka探索者界面的图形化用户界面.预处理 ...

  6. Weka中数据挖掘与机器学习系列之基本概念(三)

    数据挖掘和机器学习 数据挖掘和机器学习这两项技术的关系非常密切.机器学习方法构成数据挖掘的核心,绝大多数数据挖掘技术都来自机器学习领域,数据挖掘又向机器学习提出新的要求和任务. 数据挖掘就是在数据中寻 ...

  7. 如何在weka中连接数据库(转)

    相关准备: Weka.mysql已安装 MYSQL Driver for JDBC 1.进入weka的安装目录 1)新建文件夹lib和文件夹weka,然后将mysql-connector-java-5 ...

  8. Weka中数据挖掘与机器学习系列之Weka3.7和3.9不同版本共存(七)

    不多说,直接上干货! 为什么,我要写此博客,原因是(以下,我是weka3.7.8) 以下是,weka3.7.8的安装版本. Weka中数据挖掘与机器学习系列之Weka系统安装(四) 基于此,我安装最新 ...

  9. 用Eclipse在Weka中嵌入新算法

    本文介绍添加一个新算法到Weka集成环境中的过程,并能在GUI中运行并显示其结果.想做到这一点有两种方法,一是用ANT命令生成新的weka.jar(稍后写教程),二是用IDE(Eclipse或NetB ...

随机推荐

  1. YYLabel计算富文本高度-膜拜大神

    http://www.jianshu.com/p/07cd655fee7e YYTextLayout *layout = [YYTextLayout layoutWithContainerSize:C ...

  2. REQUEST FORM 实例

    https://www.programcreek.com/python/example/51524/flask.request.form

  3. CF1044B Intersecting Subtrees 构造+树论

    正解:构造 解题报告: 传送门 又是一道交互题!爱了爱了! 这题真的,极妙!非常神仙!就非常非常思维题! 直接说解法了吼 说起来实在是简单鸭 就是先问一个对方的联通块中的一个点在我这儿的编号,记为x ...

  4. [MySQL 5.6] MySQL 5.6 group commit 性能测试及内部实现流程

    [MySQL 5.6] MySQL 5.6 group commit 性能测试及内部实现流程 http://mysqllover.com/?p=581 尽管Mariadb以及Facebook在long ...

  5. js 的each()方法遍历对象和数组

    <script src="../lib/jquery-1.8.3.min.js" ></script> <script type="text ...

  6. Word转换为markdown

    Word转换为markdown 首先你的电脑要有office word 1   安装pandoc https://github.com/jgm/pandoc/releases,可以找到最新的pando ...

  7. dfs模板(真心不会深搜)

    栈 #include <stdio.h> #include <string.h> ][]; ][]; ,-, , }; , ,-, }; int Min; void dfs(i ...

  8. 20180531-Postman 常用测试结果验证及使用技巧

  9. [LeetCode] 102. Binary Tree Level Order Traversal_Medium tag: BFS

    Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, ...

  10. notification 是同步的

    所有notification的观察者执行之后,post notification的函数才会往下执行.