SP211 PRIMIT - Primitivus recurencis

欧拉回路

Warning: enormous Input/Output data

警告:巨大的输入/输出

经过若干(11)次提交后,我终于明白了,真的要把数组开大。


题意: 给定 t 组数据,每组数据有n条有向边(对,没给范围),每个点的编号<=1000。

打印一串最短的数列包括所有有向边

这是满足样例的一组解:(8, 5, 1, 4, 2, 3, 9, 6, 4, 5, 7, 6, 2, 8, 6)


分析样例发现,编号为2,4,8的3个点是奇点(此处指出度>入度的点)。而答案为15=12+3=边数+奇点数

我们就可以联想到欧拉回路。

你需要知道一件事:对于每个满足欧拉回路性质的图,不管你怎么走,总能一次性把所有边走一遍。(自寻死路不算qwq)

而满足样例的一组解可拆分为:(8, 5, 1, 4, 2, 3, 9, 6)  (4, 5, 7, 6)  (2, 8, 6)

显然走了3次,起点为8,4,2。

答案就十分显然了。


不,并没有结束。因为我们忽略了图的连通性和没有奇点的图。

对于没有奇点的图,显然我们要走一次,数列长度为 边数+1

我们可以用dfs把以上情况一起处理掉。

注意dfs只需要把点遍历一遍,而不用遍历边(会T掉),原因见上↑

(这种冷门题没人看得见吧QAQ)

code:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
template <typename T> inline T max(T &a,T &b) {return a>b ?a:b;}
template <typename T> inline void read(T &x){
char c=getchar(); x=;
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=(x<<)+(x<<)+(c^),c=getchar();
}
template <typename T> inline void output(T x){
if(!x) {putchar(); return ;}
int wt[],l=;
while(x) wt[++l]=x%,x/=;
while(l) putchar(wt[l--]+);
}
int t[],ans,mxd,n,tt,u,v,_top,st[];
int cnt,hd[],nxt[],ed[],poi[];//尽量开大
bool vis[],appear[];
inline void add(int x,int y){ //邻接表
nxt[ed[x]]=++cnt; hd[x]= hd[x] ? hd[x]:cnt;
ed[x]=cnt; poi[cnt]=y; ++t[x]; --t[y];
}
inline void dfs(int u){ //dfs遍历点
vis[u]=;
for(int i=hd[u];i;i=nxt[i])
if(!vis[poi[i]])
dfs(poi[i]);
}
int main(){
scanf("%d",&tt);
while(tt--){
memset(appear,,sizeof(appear)); //该清空的都清空一遍
memset(vis,,sizeof(vis));
memset(t,,sizeof(t));
memset(hd,,sizeof(hd));
memset(nxt,,sizeof(nxt));
memset(ed,,sizeof(ed));
memset(poi,,sizeof(poi));
read(n); ans=n; mxd=cnt=; //边数是固定的,可以提出来
for(int i=;i<=n;++i){
read(u); read(v);
mxd=max(mxd,max(u,v));
add(u,v);
appear[u]=appear[v]=;
}
for(int i=;i<=mxd;++i) if(t[i]>) ans+=t[i],dfs(i); //有奇点的图
for(int i=;i<=mxd;++i) if(!vis[i]&&appear[i]) dfs(i),++ans; //没有奇点的图
output(ans); putchar('\n');
}return ;
}

SP211 PRIMIT - Primitivus recurencis(欧拉回路)的更多相关文章

  1. ACM/ICPC 之 混合图的欧拉回路判定-网络流(POJ1637)

    //网络流判定混合图欧拉回路 //通过网络流使得各点的出入度相同则possible,否则impossible //残留网络的权值为可改变方向的次数,即n个双向边则有n次 //Time:157Ms Me ...

  2. [poj2337]求字典序最小欧拉回路

    注意:找出一条欧拉回路,与判定这个图能不能一笔联通...是不同的概念 c++奇怪的编译规则...生不如死啊... string怎么用啊...cincout来救? 可以直接.length()我也是长见识 ...

  3. ACM: FZU 2112 Tickets - 欧拉回路 - 并查集

     FZU 2112 Tickets Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u P ...

  4. UVA 10054 the necklace 欧拉回路

    有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...

  5. POJ 1637 混合图的欧拉回路判定

    题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...

  6. codeforces 723E (欧拉回路)

    Problem One-Way Reform 题目大意 给一张n个点,m条边的无向图,要求给每条边定一个方向,使得最多的点入度等于出度,要求输出方案. 解题分析 最多点的数量就是入度为偶数的点. 将入 ...

  7. UVa 12118 检查员的难题(dfs+欧拉回路)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  8. UVA 10054 (欧拉回路) The Necklace

    题目:这里 题意:有一种由彩色珠子连接而成的项链,每个珠子两半由不同颜色(由1到50的数字表示颜色)组成,相邻的两个珠子在接触的地方颜色相同,现在有一些零碎的珠子,确认它是否能 复原成完整的项链. 把 ...

  9. poj2513Colored Sticks(无向图的欧拉回路)

    /* 题意:将两端涂有颜色的木棒连在一起,并且连接处的颜色相同! 思路:将每一个单词看成一个节点,建立节点之间的无向图!判断是否是欧拉回路或者是欧拉路 并查集判通 + 奇度节点个数等于2或者0 */ ...

随机推荐

  1. TOP100summit 2017:亚马逊Echo音箱能够语音识人,华人工程师揭秘设计原理

      本文编辑:Cynthia 2017年,人工智能的消费产品落地聚焦在了智能音箱上,谷歌.亚马逊纷纷推出智能音箱产品,国内的阿里巴巴推出天猫精灵,小米推出小米AI音箱.智能音箱通过语音可以发出指令,未 ...

  2. zero-shot learning(ps:每天演好一个情绪稳定的成年人)

    my paper~~ 1.(DAP,IAP)Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer 2 ...

  3. 老师的blog整理

    python基础部分: 宝哥blog: https://www.cnblogs.com/guobaoyuan/ 开哥blog: https://home.cnblogs.com/u/Neeo 女神笔记 ...

  4. POJ 3254 - Corn Fields - [状压DP水题]

    题目链接:http://poj.org/problem?id=3254 Time Limit: 2000MS Memory Limit: 65536K Description Farmer John ...

  5. win7操作系统说明

    · 能够使用windows7操作系统成为了许多电脑用户的一大喜悦之事,相比之前的Vista系统,windows7系统真的是好看了,快了,好用了,但你是否担心自己的windows7系统就像新安装其他Wi ...

  6. 东哥讲义2 - 基于TCP,UDP协议的攻击,分析与防护

    TCP SYN FLOOD 攻击 正常的TCP三次握手过程: 处于SYN FLOOD攻击状态时的三次握手过程: 查看示例:x_syn.c文件,一个实现了自定义mac,ip,tcp头部的syn floo ...

  7. LoadRunner-录制脚本中文显示乱码

    录制的脚本中中文字符显示乱码 在Tools->Recording Options中设置支持UTF-8即可

  8. Making the Grade---poj3666(dp)

    题目链接:http://poj.org/problem?id=3666 题意:有一个n个数的序列a,现在要把这些序列变成单调增的或者单调减的序列 b , 其价值为|A1 - B1| + |A2 - B ...

  9. 洛谷P4147 玉蟾宫 单调栈/悬线法

    正解:单调栈/悬线法 解题报告: ummm这题我当初做的时候一点思路也没有只会暴力出奇迹:D(啊听说暴力好像能水过去呢,,, 然后当初是看的题解,然后学了下悬线法 然后就忘了:D 然后我现在看发现看不 ...

  10. LINUX的前后台程序查看切换

    1.在Linux终端运行命令的时候,在命令末尾加上 & 符号,就可以让程序在后台运行 root@Ubuntu$ ./tcpserv01 & 2.如果程序正在前台运行,可以使用 Ctrl ...