参考:

cs229讲义

机器学习(一):生成学习算法Generative Learning algorithmshttp://www.cnblogs.com/zjgtan/archive/2013/06/08/3127490.html


首先,简单比较一下前几节课讲的判别学习算法(Discriminative Learning Algorithm)和本节课讲的生成学习算法(Generative Learning Algorithm)的区别。

eg:问题:Consider a classification problem in which we want to learn to distinguishbetween elephants (y  =  1) and dogs (y  =  0), based on some features of
an animal.

判别学习算法:(DLA通过建立输入空间X与输出标注{1, 0}间的映射关系学习得到p(y|x))

Given a training set,  an algorithm like logistic regression or the perceptron algorithm (basically) tries to find a straight linethat is, a decision boundary—that separates the elephants and dogs. Then, to classify a new animal as either an elephant or a dog, it checks on which side of the decision boundary it falls, and makes its prediction accordingly.

生成学习算法:(GLA首先确定p(x|y)和p(y),由贝叶斯准则得到后验分布,通过最大后验准则进行预测,)

First, looking at elephants, we can build a model of what elephants look like.  Then, looking at dogs, we can build a separate model of what dogs look like. Finally, to classify a new animal, we can match the new animal against the elephant model, and match it against the dog model, to see whether the new animal looks more like the elephants or more like the dogs we had seen in the training set.

(ps:先验概率 vs 后验概率

事情还没有发生,要求这件事情发生的可能性的大小,是

先验概率

.
事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小,是

后验概率

.

)


生成学习算法

首先,温习一下高斯分布的相关知识:

高斯分布      Gaussian distribution

高斯分布也就是正态分布; 数学期望为, 方差的高斯分布通常记为.

标准正态分布      Standard normal distribution

标准正态分布是指数学期望, 方差为正态分布, 记为. 对于数学期望为, 方差为的正态分布随机变量, 通过下列线性变换可以得到服从标准正态分布的随机变量.

二元正态分布    Bivariate normal distribution

二元正态分布[]是指两个服从正态分布的随机变量具有的联合概率分布. 二元正态分布的联合概率密度函数为

其中

, , , , 为概率分布的参数. 上述二元正态分布记为.

二元正态分布特征函数

多元正态分布    Multivariate normal distribution

多元正态分布是指多个服从正态分布的随机变量组成的随机向量具有的联合概率分布. 数学期望协方差矩阵随机变量的多元正态分布联合概率密度函数

服从多元正态分布可以记为.

如果, 并且, 那么.

可以看到,多元正态分布与两个量相关:均值和协方差矩阵。因此,接下来,通过图像观察一下改变这两个量的值,所引起的变化。

    1.   1、高斯判别分析(GDA,Gaussian Discriminant Analysis):

a、提出假设遵循正态分布:

In this model, we’ll assume that p(x|y) is distributed according to a multivariate normal distribution(多元正态分布).

b、分别对征服样本进行拟合,得出相应的模型

最后,比较一下GDA和Logistic回归

GDA——如果确实符合实际数据,则只需要少量的样本就可以得到较好的模型

Logistic Regression——Logistic回归模型有更好的鲁棒性

总结:

GDA makes stronger modeling assumptions, and is more data efficient (i.e., requires less training data to learn “well”) when the modeling assumptions are correct or at least approximately correct.

Logistic regression makes weaker assumptions,  and is significantly more robust to deviations from modeling assumptions.

Specifically,  when the data is indeed non-Gaussian, then in the limit of large datasets, logistic regression will almost always do better than GDA. For this reason, in practice logistic regression is used more often than GDA. (Some related considerations about discriminative vs.  generative models also apply for the Naive Bayes algorithm that we discuss next, but the Naive Bayes algorithm is still considered a very good, and is certainly also a very popular, classification algorithm.)

2、朴素贝叶斯(NB,Naive Bayes):

以文本分类为例,基于条件独立的假设。在实际语法上,有些单词之间是存在一定联系的,尽管如此,朴素贝叶斯还是表现出了非常好的性能。

因为独立,所以

得到联合似然函数Joint Likelihood:

得到这些参数的估计值之后,给你一封新的邮件,可以根据贝叶斯公式,计算

(可以参阅我的另一篇实战随笔:http://www.cnblogs.com/XBWer/p/3840736.html


Laplace smoothing(Laplace 平滑)

当邮件中遇到新词,(0/0)本质是输入样本特征空间维数的提升,旧的模型无法提供有效分类信息。

遇到这种情况时,可以进行平滑处理:(+1)

==============>

【cs229-Lecture5】生成学习算法:1)高斯判别分析(GDA);2)朴素贝叶斯(NB)的更多相关文章

  1. [置顶] 生成学习算法、高斯判别分析、朴素贝叶斯、Laplace平滑——斯坦福ML公开课笔记5

    转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9285001 该系列笔记1-5pdf下载请猛击这里. 本篇博客为斯坦福ML公开 ...

  2. Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯

    (一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解 ...

  3. 什么是机器学习的分类算法?【K-近邻算法(KNN)、交叉验证、朴素贝叶斯算法、决策树、随机森林】

    1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类 ...

  4. 机器学习理论基础学习3.5--- Linear classification 线性分类之朴素贝叶斯

    一.什么是朴素贝叶斯? (1)思想:朴素贝叶斯假设    条件独立性假设:假设在给定label y的条件下,特征之间是独立的    最简单的概率图模型 解释: (2)重点注意:朴素贝叶斯 拉普拉斯平滑 ...

  5. 【十大算法实现之naive bayes】朴素贝叶斯算法之文本分类算法的理解与实现

    关于bayes的基础知识,请参考: 基于朴素贝叶斯分类器的文本聚类算法 (上) http://www.cnblogs.com/phinecos/archive/2008/10/21/1315948.h ...

  6. CS229 Lesson 5 生成学习算法

    课程视频地址:http://open.163.com/special/opencourse/machinelearning.html 课程主页:http://cs229.stanford.edu/ 更 ...

  7. CS229笔记:生成学习算法

    在线性回归.逻辑回归.softmax回归中,学习的结果是\(p(y|x;\theta)\),也就是给定\(x\)的条件下,\(y\)的条件概率分布,给定一个新的输入\(x\),我们求出不同输出的概率, ...

  8. Python机器学习笔记:朴素贝叶斯算法

    朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...

  9. 3.朴素贝叶斯和KNN算法的推导和python实现

    前面一个博客我们用Scikit-Learn实现了中文文本分类的全过程,这篇博客,着重分析项目最核心的部分分类算法:朴素贝叶斯算法以及KNN算法的基本原理和简单python实现. 3.1 贝叶斯公式的推 ...

  10. 朴素贝叶斯算法java实现(多项式模型)

    网上有很多对朴素贝叶斯算法的说明的文章,在对算法实现前,参考了一下几篇文章: NLP系列(2)_用朴素贝叶斯进行文本分类(上) NLP系列(3)_用朴素贝叶斯进行文本分类(下) 带你搞懂朴素贝叶斯分类 ...

随机推荐

  1. JDBC创建表实例

    在本教程将演示如何在JDBC应用程序中创建一个数据库表. 在执行以下示例之前,请确保您已经准备好以下操作: 具有数据库管理员权限,以在给定模式中创建数据库表. 要执行以下示例,需要用实际用户名和密码替 ...

  2. 【未通过】LintCode #366 斐波纳契数列

    实现: public class Solution { /** * @param n: an integer * @return: an ineger f(n) */ public int fibon ...

  3. Java线程创建的两种方式

    java多线程总结一:线程的两种创建方式及优劣比较 (一)---之创建线程的两种方式 java实现多线程的两种方法的比较

  4. drools研究后记

    在实际工作中,有关于达标推断的业务逻辑 就是谁谁谁 消费满了多少钱.就返多少钱的优惠券 声明:不是drools不好,仅仅是在我遇到的场景下,不合适,不够好 在使用drools的时候发现有例如以下问题: ...

  5. Vi编辑器修改文件.bash_profile可解决backspace出现乱码问题,rlwrap 的安装。

    Vi编辑器修改文件.bash_profile可解决backspace出现乱码问题 使用SecureCRT或是pietty_ch连接到一台安装有Oracle DB 10g的RHEL4.2的机器,linu ...

  6. go类型系统

    https://blog.csdn.net/hittata/article/details/50915496 https://blog.csdn.net/hittata/article/details ...

  7. spring boot整合activemq消息中间件

    spring boot整合activemq消息中间件 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi ...

  8. tomcat启动时出现了Failed to start component [StandardEngine[Catalina].StandardHost[localhost]]

    https://blog.csdn.net/imjcoder/article/details/78725267 <dependency> <groupId>org.spring ...

  9. gtk界面设计

    一.GTK基本 #include <gtk/gtk.h> int main( int argc, char *argv[]) { GtkWidget *window; /*初始化整个GTK ...

  10. Eclipse------maven使用Maven build编译web项目显示" javax.servlet.http 不存在"

    缺少javax.servlet包 解决方法: 引入下面代码即可 <project> <dependencies> <dependency> <groupId& ...