SPOJ JZPLIT
Problem
Solution
考虑任意一个作为矩阵四个角的位置
\(r_i \oplus c_j\oplus a_{i,j}\oplus x_{i,j}=0\)
\(r_i \oplus c_{j+1}\oplus a_{i,j+1}\oplus x_{i,j+1}=0\)
\(r_{i+1}\oplus c_j\oplus a_{i+1,j}\oplus x_{i+1,j}=0\)
\(r_{i+1}\oplus c_{j+1}\oplus a_{i+1,j+1}\oplus x_{i+1,j+1}=0\)
\(a_{i,j}\oplus a_{i,j+1}\oplus a_{i+1,j}\oplus a_{i+1,j+1}\oplus x_{i,j}\oplus x_{i,j+1}\oplus x_{i+1,j}\oplus x_{i+1,j+1}=0\)
则只需要解出第一行第一列的操作方法就可以表示其他格子的操作方法。
未知的状态数就减少到\(O(n+m-1)\)。对于所有第一行第一列的格子列方程,即这行这列的所有操作异或后等于当前状态,然后bitset优化即可。
时间复杂度\(O(\frac {(n+m)^3} {32})\),注意卡常。
Code
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("Ofast")
#pragma GCC optimize(3)
#include <cstdio>
#include <bitset>
using namespace std;
typedef long long ll;
template <typename Tp> inline int getmin(Tp &x,Tp y){return y<x?x=y,1:0;}
template <typename Tp> inline int getmax(Tp &x,Tp y){return y>x?x=y,1:0;}
template <typename Tp> inline void read(Tp &x)
{
x=0;int f=0;char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') f=1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
if(f) x=-x;
}
int n,m,a[1010][1010],b[2010][2010],ans[1010][1010];
char s[1010];
bitset<2010> x[2010];
inline void calc(int i,int j,int id)
{
b[id][1]^=1;b[id][j]^=1;b[id][i+m-1]^=1;
b[id][n+m]^=a[1][1]^a[1][j]^a[i][1]^a[i][j];
}
void gauss()
{
int k;
for(int i=1;i<n+m;i++)
{
for(k=i;k<n+m;k++)
if(x[k][i]) break;
if(k>=n+m) continue;
if(k^i) swap(x[i],x[k]);
for(int j=1;j<n+m;j++)
if(i^j&&x[j][i])
x[j]^=x[i];
}
}
int main()
{
read(n);read(m);
for(int i=1;i<=n;i++)
{
scanf("%s",s+1);
for(int j=1;j<=m;j++) a[i][j]=(s[j]=='1');
}
for(int i=1;i<n+m;i++) b[i][i]=1;
for(int i=1;i<n+m;i++) b[1][i]=1;
b[1][n+m]=a[1][1];
//the first eq
for(int i=2;i<=m;i++)
{
b[i][n+m]=a[1][i];
for(int j=1;j<=m;j++) b[i][j]=1;
}
for(int i=2;i<=n;i++)
{
b[i+m-1][n+m]=a[i][1];b[i+m-1][1]=1;
for(int j=m+1;j<n+m;j++) b[i+m-1][j]=1;
}
for(int i=2;i<=n;i++)
for(int j=2;j<=m;j++)
{
calc(i,j,j);
calc(i,j,i+m-1);
}
for(int i=1;i<n+m;i++)
for(int j=1;j<=n+m;j++)
if(b[i][j])
x[i].set(j);
gauss();
for(int i=1;i<=m;i++) ans[1][i]=x[i][n+m];
for(int i=2;i<=n;i++) ans[i][1]=x[i+m-1][n+m];
for(int i=1;i<=n;i++,putchar('\n'))
for(int j=1;j<=m;j++)
{
if(i>1&&j>1)
ans[i][j]=a[1][1]^a[i][1]^a[1][j]^a[i][j]^ans[1][1]^ans[i][1]^ans[1][j];
printf("%d",ans[i][j]);
}
return 0;
}
SPOJ JZPLIT的更多相关文章
- BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 5217 Solved: 1233 ...
- SPOJ DQUERY D-query(主席树)
题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...
- SPOJ GSS3 Can you answer these queries III[线段树]
SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...
- 【填坑向】spoj COT/bzoj2588 Count on a tree
这题是学主席树的时候就想写的,,, 但是当时没写(懒) 现在来填坑 = =日常调半天lca(考虑以后背板) 主席树还是蛮好写的,但是代码出现重复,不太好,导致调试的时候心里没底(虽然事实证明主席树部分 ...
- SPOJ bsubstr
题目大意:给你一个长度为n的字符串,求出所有不同长度的字符串出现的最大次数. n<=250000 如:abaaa 输出: 4 2 1 1 1 spoj上的时限卡的太严,必须使用O(N)的算法那才 ...
- 【SPOJ 7258】Lexicographical Substring Search
http://www.spoj.com/problems/SUBLEX/ 好难啊. 建出后缀自动机,然后在后缀自动机的每个状态上记录通过这个状态能走到的不同子串的数量.该状态能走到的所有状态的f值的和 ...
- 【SPOJ 1812】Longest Common Substring II
http://www.spoj.com/problems/LCS2/ 这道题想了好久. 做法是对第一个串建后缀自动机,然后用后面的串去匹配它,并在走过的状态上记录走到这个状态时的最长距离.每匹配完一个 ...
- 【SPOJ 8222】Substrings
http://www.spoj.com/problems/NSUBSTR/ clj课件里的例题 用结构体+指针写完模板后发现要访问所有的节点,改成数组会更方便些..于是改成了数组... 这道题重点是求 ...
- SPOJ GSS2 Can you answer these queries II
Time Limit: 1000MS Memory Limit: 1572864KB 64bit IO Format: %lld & %llu Description Being a ...
随机推荐
- HDU4669_Mutiples on a circle
题目的意思是给你一些数字a[i](首位相连),现在要你选出一些连续的数字连续的每一位单独地作为一个数位.现在问你有多少种选择的方式使得选出的数字为k的一个倍数. 其实题目是很简单的.由于k不大(200 ...
- java map 当key相同的时候 最后一个覆盖最近的一个值
- MariaDB插入中文出现???情况
本来打算创建一个测试表进行一个简单的实验,发现创建完python_test表后插入数据后,select发现所有中文都变成问号了,这一看就是出现了乱码 MariaDB [lhc]> create ...
- Shell脚本重启Python程序
# restart.sh old_pid=$(ps ax|grep Service.py|grep -v grep|awk '{print $1}') echo "old_pid=${old ...
- 【题解】APIO2014回文串
哇哦~想不到我有生之年竟然能够做出字符串的题目ヾ(✿゚▽゚)ノ虽然这题比较裸但依然灰常开心! 首先有一个棒棒的性质:本质不同的回文串最多有 O(n) 个.首先 manacher 把它们都找出来,然后问 ...
- 【MVVM 原生】原生MVVM的使用
一.前言 前些天需要完成一个任务,该任务属于公司的一些核心代码,为了避免不必要的麻烦,任务要求不能使用第三方的MVVM框架,必须用原生的. 平时习惯了Dev与MVVMLight,遇上原生的 ...
- 最小生成树-----Prim算法与Kruskal算法(未完
生成树(spanning tree):无向联通图的某个子图中,任意两个顶点互相都联通并且形成了一棵树,那么这棵树就叫做生成树. 最小生成树(MST,minimum spanning tree):如果为 ...
- 一个优质的Vue组件库应该遵循什么样的设计原则
一.组件库的价值 就个人而言,拥有一套自己的组件库,可以让你的开发变得更高效,让你在行业里更有价值. 就团队而言,拥有一套团队的组件库,可以让协同开发变得更高效规范,让你的团队在公司更具有影响力. 就 ...
- Machine Learning in Action-chapter2-k近邻算法
一.numpy()函数 1.shape[]读取矩阵的长度 例: import numpy as np x = np.array([[1,2],[2,3],[3,4]]) print x.shape / ...
- 14.Android UiAutomator 图像处理
一.BitMap介绍 1.图像使用场景 1)效果类截图 2)不可见的组件图像对比 3)失败与异常截图 4)利用图像判断组件 2.部分API简单说明 API 说明 compress 压缩图片 copy ...