问题 H: Planar map

时间限制: 1 Sec  内存限制: 128 MB
提交: 24  解决: 22
[提交][状态][讨论版]

题目描述

Tigher has work for a long time in a famous company.One day she is given a planar map(look at

the following) and a point.The planar map can be regarded as a polygon.The planar map has n

positions,which are the n vertexes in the polygon.

Actually the point replace the position of a supermarket.The supermarket has a range of its

effect,which show as a circle.The company wants to know the maximum radius of the

circle.Unfortunately,Tigher decides to see movie with her BF this evening.So she give the project

to the ipqhjjybj(so poor!).However,ipqhjjybj want to have dinner with his new friends(do you

remember the “hengheng eat noodles” last time),so he throw the project to you.Can you solve it?

输入

An interger CASE ,which means the total case num.

For every case, the first line is an interger means n.(1<=n<=6)

Then will be n lines (x , y) which indicates the n points' position.

The n+2 line will be the coordinate of the supermarket,and we promise that this point must be in the internal of the planar map.

And this n points will form n lines , which is (n1, n2) (n2 , n3) (n3 ,n4) (n4, n5)...(nn,n1)

输出

It will give just an real number . (Preserve 3 decimal places)

样例输入

4
4
0 0
2 0
2 2
0 2
1 1
1
1 1
1 1
6
0 0
2 0
3 1
2 2
1 1
0 2
1 0.5
3
0 0
0 1
1 0
0.5 0.5

样例输出

1.000
0.000
0.500
0.000

提示

对所有线段取点到线段距离最小值

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
struct pnt{
double x,y;
pnt(){x=y=0;}
pnt(double x,double y){this->x=x;this->y=y;}
};
pnt pt[100];
int n;
double caldis(pnt a,pnt b){return sqrt((a.y-b.y)*(a.y-b.y)+(a.x-b.x)*(a.x-b.x));}
double calc(pnt o,pnt a,pnt b){
if(a.y==b.y){
if(o.x<=max(a.x,b.x)&&o.x>=min(a.x,b.x))return fabs(o.y-a.y);
else return min(caldis(o,a),caldis(o,b));
}
else if(a.x==b.x){
if(o.y<=max(a.y,b.y)&&o.y>=min(a.y,b.y))return fabs(o.x-a.x);
else return min(caldis(o,a),caldis(o,b));
}
else{
double k=(b.y-a.y)/(b.x-a.x);
double tx=o.y-a.y+k*a.x+o.x/k;
tx/=(k+1/k);
double ty=k*(tx-a.x)+a.y;
if(tx<=max(a.x,b.x)&&tx>=min(a.x,b.x)&&ty<=max(a.y,b.y)&&ty>=min(a.y,b.y)){
return caldis(o,pnt(tx,ty));
}
else return min(caldis(o,a),caldis(o,b));
}
}
int main(){
int T;
scanf("%d",&T);
for(int ti=0;ti<T;ti++){
scanf("%d",&n);
pnt o;
for(int i=0;i<n;i++){
scanf("%lf%lf",&pt[i].x,&pt[i].y);
}
scanf("%lf%lf",&o.x,&o.y);
double ans=1e19;
for(int i=0;i<n;i++){
ans=min(ans,calc(o,pt[i],pt[(i+1)%n]));
}
printf("%.3f\n",ans);
}
return 0;
}

  

NEU 1496 Planar map 计算几何,点到线段距离 难度:0的更多相关文章

  1. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内

    首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...

  2. POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4438   Acc ...

  3. POJ - 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

    http://poj.org/problem?id=1584 题意 按照顺时针或逆时针方向输入一个n边形的顶点坐标集,先判断这个n边形是否为凸包. 再给定一个圆形(圆心坐标和半径),判断这个圆是否完全 ...

  4. Peter and Snow Blower CodeForces - 613A (点到线段距离)

    大意: 给定多边形, 给定点$P$, 求一个以$P$为圆心的最小的圆环包含整个多边形. #include <iostream> #include <cmath> #define ...

  5. HDU 6697 Closest Pair of Segments(线段距离)

    首先最容易想到的就是N2暴力枚举所有线段去找最小值,但是这样会做了许多无用功.我们可以先对线段排序,使得线段最左侧的端点按照x轴y轴排序,然后我们可以限定在这个线段的矩形框内的所有线段才有可能产生最小 ...

  6. (点到线段的最短距离)51nod1298 圆与三角形

    1298 圆与三角形 给出圆的圆心和半径,以及三角形的三个顶点,问圆同三角形是否相交.相交输出"Yes",否则输出"No".(三角形的面积大于0).   收起 ...

  7. poj1584(判断凸包+求点到线段的距离)

    题目链接:https://vjudge.net/problem/POJ-1584 题意:首先要判断凸包,然后判断圆是否在多边形中. 思路: 判断凸包利用叉积,判断圆在多边形首先要判断圆心是否在多边形中 ...

  8. UVa 11168 (凸包+点到直线距离) Airport

    题意: 平面上有n个点,求一条直线使得所有点都在直线的同一侧.并求这些点到直线的距离之和的最小值. 分析: 只要直线不穿过凸包,就满足第一个条件.要使距离和最小,那直线一定在凸包的边上.所以求出凸包以 ...

  9. 诡异之--map clear 之后可能导致size != 0的操作

    map<char, int>mp; charMp[; charMp['b'] ++; cout<<charMp['a']<<endl; cout<<ch ...

随机推荐

  1. es6函数模块-------初步学习

    初步学习: 函数参数允许尾逗号 function clownsEverywhere( param1, param2, //param2后面有逗号 ) { } 函数参数可以赋初值 利用解构赋值默认值结合 ...

  2. Scala List 用法

    1.++[B]   在A元素后面追加B元素 scala> val a = List(1) a: List[Int] = List(1) scala> val b = List(2) b: ...

  3. java 2017/6/26杂记

    mkdirs()可以建立多级文件夹, mkdir()只会建立一级的文件夹, 如下: new File("/tmp/one/two/three").mkdirs(); 执行后, 会建 ...

  4. CentOS的Qt3和Qt4问题

    在有的系统中,装有Qt3和Qt4, 在使用qmake生成Makefile后,直接make, 出错,说没有头文件, 如果调用了qt3的qmake,那么上头的INCPATH里的头文件路径也指向了Qt3, ...

  5. mysql系列之多实例介绍

    介绍: mysql多实例,简单理解就是在一台服务器上,mysql服务开启多个不同的端口(如3306.3307),运行多个服务进程.这些 mysql 服务进程通过不同的 socket来监听不同的数据端口 ...

  6. NOIP树上问题总结

    这几年考了好几次树上问题: NOIP2012 疫情控制(二分答案+倍增+贪心) NOIP2013 货车运输(最大生成树+倍增) NOIP2014 联合权值(勉强算作树形dp的傻逼题) NOIP2015 ...

  7. db2快照

    一.获取快照日志 #1.查看数据库编目 db2 list db directory #2.attach 到要分析的数据库 db2 attach to pm1_9 user db2dev #3.conn ...

  8. .net 获取当前电脑账户

    string domainAndName = User.Identity.Name; ] { '\\' }, StringSplitOptions.RemoveEmptyEntries); strin ...

  9. DataTable扩展:转化实体ToList

    直接上代码: 根据属性进行映射:DataTable转化成实体List public static class DataTableExtension { public static List<T& ...

  10. Dive into Spring framework -- 了解基本原理(二)--设计模式-part1

    比较巧,自己在接触设计模式的时候,也刚开始学习spring,但可惜的是,真的仅仅在学习“用”spring,每天都沉浸在会痛快的完成spring各种配置的快乐之中,但对成长无用.其实当初就清楚,spri ...