NEU 1496 Planar map 计算几何,点到线段距离 难度:0
问题 H: Planar map
时间限制: 1 Sec 内存限制: 128 MB
提交: 24 解决: 22
[提交][状态][讨论版]
题目描述
Tigher has work for a long time in a famous company.One day she is given a planar map(look at
the following) and a point.The planar map can be regarded as a polygon.The planar map has n
positions,which are the n vertexes in the polygon.
Actually the point replace the position of a supermarket.The supermarket has a range of its
effect,which show as a circle.The company wants to know the maximum radius of the
circle.Unfortunately,Tigher decides to see movie with her BF this evening.So she give the project
to the ipqhjjybj(so poor!).However,ipqhjjybj want to have dinner with his new friends(do you
remember the “hengheng eat noodles” last time),so he throw the project to you.Can you solve it?
输入
An interger CASE ,which means the total case num.
For every case, the first line is an interger means n.(1<=n<=6)
Then will be n lines (x , y) which indicates the n points' position.
The n+2 line will be the coordinate of the supermarket,and we promise that this point must be in the internal of the planar map.
And this n points will form n lines , which is (n1, n2) (n2 , n3) (n3 ,n4) (n4, n5)...(nn,n1)
输出
It will give just an real number . (Preserve 3 decimal places)
样例输入
4
4
0 0
2 0
2 2
0 2
1 1
1
1 1
1 1
6
0 0
2 0
3 1
2 2
1 1
0 2
1 0.5
3
0 0
0 1
1 0
0.5 0.5
样例输出
1.000
0.000
0.500
0.000
提示
对所有线段取点到线段距离最小值
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
struct pnt{
double x,y;
pnt(){x=y=0;}
pnt(double x,double y){this->x=x;this->y=y;}
};
pnt pt[100];
int n;
double caldis(pnt a,pnt b){return sqrt((a.y-b.y)*(a.y-b.y)+(a.x-b.x)*(a.x-b.x));}
double calc(pnt o,pnt a,pnt b){
if(a.y==b.y){
if(o.x<=max(a.x,b.x)&&o.x>=min(a.x,b.x))return fabs(o.y-a.y);
else return min(caldis(o,a),caldis(o,b));
}
else if(a.x==b.x){
if(o.y<=max(a.y,b.y)&&o.y>=min(a.y,b.y))return fabs(o.x-a.x);
else return min(caldis(o,a),caldis(o,b));
}
else{
double k=(b.y-a.y)/(b.x-a.x);
double tx=o.y-a.y+k*a.x+o.x/k;
tx/=(k+1/k);
double ty=k*(tx-a.x)+a.y;
if(tx<=max(a.x,b.x)&&tx>=min(a.x,b.x)&&ty<=max(a.y,b.y)&&ty>=min(a.y,b.y)){
return caldis(o,pnt(tx,ty));
}
else return min(caldis(o,a),caldis(o,b));
}
}
int main(){
int T;
scanf("%d",&T);
for(int ti=0;ti<T;ti++){
scanf("%d",&n);
pnt o;
for(int i=0;i<n;i++){
scanf("%lf%lf",&pt[i].x,&pt[i].y);
}
scanf("%lf%lf",&o.x,&o.y);
double ans=1e19;
for(int i=0;i<n;i++){
ans=min(ans,calc(o,pt[i],pt[(i+1)%n]));
}
printf("%.3f\n",ans);
}
return 0;
}
NEU 1496 Planar map 计算几何,点到线段距离 难度:0的更多相关文章
- POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内
首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...
- POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4438 Acc ...
- POJ - 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)
http://poj.org/problem?id=1584 题意 按照顺时针或逆时针方向输入一个n边形的顶点坐标集,先判断这个n边形是否为凸包. 再给定一个圆形(圆心坐标和半径),判断这个圆是否完全 ...
- Peter and Snow Blower CodeForces - 613A (点到线段距离)
大意: 给定多边形, 给定点$P$, 求一个以$P$为圆心的最小的圆环包含整个多边形. #include <iostream> #include <cmath> #define ...
- HDU 6697 Closest Pair of Segments(线段距离)
首先最容易想到的就是N2暴力枚举所有线段去找最小值,但是这样会做了许多无用功.我们可以先对线段排序,使得线段最左侧的端点按照x轴y轴排序,然后我们可以限定在这个线段的矩形框内的所有线段才有可能产生最小 ...
- (点到线段的最短距离)51nod1298 圆与三角形
1298 圆与三角形 给出圆的圆心和半径,以及三角形的三个顶点,问圆同三角形是否相交.相交输出"Yes",否则输出"No".(三角形的面积大于0). 收起 ...
- poj1584(判断凸包+求点到线段的距离)
题目链接:https://vjudge.net/problem/POJ-1584 题意:首先要判断凸包,然后判断圆是否在多边形中. 思路: 判断凸包利用叉积,判断圆在多边形首先要判断圆心是否在多边形中 ...
- UVa 11168 (凸包+点到直线距离) Airport
题意: 平面上有n个点,求一条直线使得所有点都在直线的同一侧.并求这些点到直线的距离之和的最小值. 分析: 只要直线不穿过凸包,就满足第一个条件.要使距离和最小,那直线一定在凸包的边上.所以求出凸包以 ...
- 诡异之--map clear 之后可能导致size != 0的操作
map<char, int>mp; charMp[; charMp['b'] ++; cout<<charMp['a']<<endl; cout<<ch ...
随机推荐
- hdu4057 Rescue the Rabbit
地址:http://acm.hdu.edu.cn/showproblem.php?pid=4057 题目: Rescue the Rabbit Time Limit: 20000/10000 MS ( ...
- Java并发编程:Lock(转)
本文转自:http://www.cnblogs.com/dolphin0520/p/3923167.html Java并发编程:Lock 在上一篇文章中我们讲到了如何使用关键字synchronized ...
- js 空数组 空对象判断
js 空数组是true还是false 1 2 var arr = new Array(); // 或 var arr = []; 我们知道,初始化后,即使数组arr中没有元素,也是一个object ...
- 谷歌技术"三宝"之BigTable(转)
原文地址: http://blog.csdn.net/opennaive/article/details/7532589 2006年的OSDI有两篇google的论文,分别是BigTable和Ch ...
- 利用C++调用天气webservice-gSOAP方法
首先需要下载一个gSOAP工具包 下载路径为:https://sourceforge.NET/projects/gsoap2/ 至于有关于gSOAP的一些用法和包含的文件的说明可从官网查看:http: ...
- Spring事务用法示例与实现原理
关于Java中的事务,简单来说,就是为了保证数据完整性而存在的一种工具,其主要有四大特性:原子性,一致性,隔离性和持久性.对于Spring事务,其最终还是在数据库层面实现的,而Spring只是以一种比 ...
- elasticsearch搜索集群基础架构
1. elasticsearch cluster搭建 http://www.cnblogs.com/kisf/p/7326980.html 为了配套spring boot,elasticsear ...
- 20145329 《Java程序设计》课程总结
每周读书笔记链接汇总 •第一周读书笔记 http://www.cnblogs.com/jdy1453/p/5248592.html •第二周读书笔记 http://www.cnblogs.com/jd ...
- Android下点亮LED
http://blog.csdn.net/cpj_phone/article/details/43562551
- Hive Shell常用操作
1.Hive非交互模式常用命令: 1) hive -e:从命令行执行指定的HQL,不需要分号: % hive -e 'select * from dummy' > a.txt 2) hive – ...