NEU 1496 Planar map 计算几何,点到线段距离 难度:0
问题 H: Planar map
时间限制: 1 Sec 内存限制: 128 MB
提交: 24 解决: 22
[提交][状态][讨论版]
题目描述
Tigher has work for a long time in a famous company.One day she is given a planar map(look at
the following) and a point.The planar map can be regarded as a polygon.The planar map has n
positions,which are the n vertexes in the polygon.
Actually the point replace the position of a supermarket.The supermarket has a range of its
effect,which show as a circle.The company wants to know the maximum radius of the
circle.Unfortunately,Tigher decides to see movie with her BF this evening.So she give the project
to the ipqhjjybj(so poor!).However,ipqhjjybj want to have dinner with his new friends(do you
remember the “hengheng eat noodles” last time),so he throw the project to you.Can you solve it?
输入
An interger CASE ,which means the total case num.
For every case, the first line is an interger means n.(1<=n<=6)
Then will be n lines (x , y) which indicates the n points' position.
The n+2 line will be the coordinate of the supermarket,and we promise that this point must be in the internal of the planar map.
And this n points will form n lines , which is (n1, n2) (n2 , n3) (n3 ,n4) (n4, n5)...(nn,n1)
输出
It will give just an real number . (Preserve 3 decimal places)
样例输入
4
4
0 0
2 0
2 2
0 2
1 1
1
1 1
1 1
6
0 0
2 0
3 1
2 2
1 1
0 2
1 0.5
3
0 0
0 1
1 0
0.5 0.5
样例输出
1.000
0.000
0.500
0.000
提示
对所有线段取点到线段距离最小值
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
struct pnt{
double x,y;
pnt(){x=y=0;}
pnt(double x,double y){this->x=x;this->y=y;}
};
pnt pt[100];
int n;
double caldis(pnt a,pnt b){return sqrt((a.y-b.y)*(a.y-b.y)+(a.x-b.x)*(a.x-b.x));}
double calc(pnt o,pnt a,pnt b){
if(a.y==b.y){
if(o.x<=max(a.x,b.x)&&o.x>=min(a.x,b.x))return fabs(o.y-a.y);
else return min(caldis(o,a),caldis(o,b));
}
else if(a.x==b.x){
if(o.y<=max(a.y,b.y)&&o.y>=min(a.y,b.y))return fabs(o.x-a.x);
else return min(caldis(o,a),caldis(o,b));
}
else{
double k=(b.y-a.y)/(b.x-a.x);
double tx=o.y-a.y+k*a.x+o.x/k;
tx/=(k+1/k);
double ty=k*(tx-a.x)+a.y;
if(tx<=max(a.x,b.x)&&tx>=min(a.x,b.x)&&ty<=max(a.y,b.y)&&ty>=min(a.y,b.y)){
return caldis(o,pnt(tx,ty));
}
else return min(caldis(o,a),caldis(o,b));
}
}
int main(){
int T;
scanf("%d",&T);
for(int ti=0;ti<T;ti++){
scanf("%d",&n);
pnt o;
for(int i=0;i<n;i++){
scanf("%lf%lf",&pt[i].x,&pt[i].y);
}
scanf("%lf%lf",&o.x,&o.y);
double ans=1e19;
for(int i=0;i<n;i++){
ans=min(ans,calc(o,pt[i],pt[(i+1)%n]));
}
printf("%.3f\n",ans);
}
return 0;
}
NEU 1496 Planar map 计算几何,点到线段距离 难度:0的更多相关文章
- POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内
首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...
- POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)
A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4438 Acc ...
- POJ - 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)
http://poj.org/problem?id=1584 题意 按照顺时针或逆时针方向输入一个n边形的顶点坐标集,先判断这个n边形是否为凸包. 再给定一个圆形(圆心坐标和半径),判断这个圆是否完全 ...
- Peter and Snow Blower CodeForces - 613A (点到线段距离)
大意: 给定多边形, 给定点$P$, 求一个以$P$为圆心的最小的圆环包含整个多边形. #include <iostream> #include <cmath> #define ...
- HDU 6697 Closest Pair of Segments(线段距离)
首先最容易想到的就是N2暴力枚举所有线段去找最小值,但是这样会做了许多无用功.我们可以先对线段排序,使得线段最左侧的端点按照x轴y轴排序,然后我们可以限定在这个线段的矩形框内的所有线段才有可能产生最小 ...
- (点到线段的最短距离)51nod1298 圆与三角形
1298 圆与三角形 给出圆的圆心和半径,以及三角形的三个顶点,问圆同三角形是否相交.相交输出"Yes",否则输出"No".(三角形的面积大于0). 收起 ...
- poj1584(判断凸包+求点到线段的距离)
题目链接:https://vjudge.net/problem/POJ-1584 题意:首先要判断凸包,然后判断圆是否在多边形中. 思路: 判断凸包利用叉积,判断圆在多边形首先要判断圆心是否在多边形中 ...
- UVa 11168 (凸包+点到直线距离) Airport
题意: 平面上有n个点,求一条直线使得所有点都在直线的同一侧.并求这些点到直线的距离之和的最小值. 分析: 只要直线不穿过凸包,就满足第一个条件.要使距离和最小,那直线一定在凸包的边上.所以求出凸包以 ...
- 诡异之--map clear 之后可能导致size != 0的操作
map<char, int>mp; charMp[; charMp['b'] ++; cout<<charMp['a']<<endl; cout<<ch ...
随机推荐
- 安装java项目开发环境
搭建java 查看本机是否已有java 如果有,请卸载. 下载jdk 复制到服务器中 临时配置你在shell里面改,只是做了临时更改啊,一重启就没了 配置到系统的环境变量里 export JAVA_H ...
- 腾讯 微信春招nlp实习生一面二面(猝)
一面: 1.算法题: 1 28数组中出现次数超过一半的数字 2 手写快排:八大排序算法总结(2) 2.项目介绍: 大多都是项目中涉及到的技术. TFIDF 的原理 word2vec的原理 3.算法原理 ...
- hdu5716
地址: 题目: 带可选字符的多字符串匹配 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...
- QML Image Element
QML Image Element The Image element displays an image in a declarative user interface More... Image元 ...
- Centos下给PHP7添加Xhprof性能分析
什么是 Xhprof?XHProf是facebook 开发的一个测试php性能的扩展,本文记录了在PHP应用中使用XHProf对PHP进行性能优化,查找性能瓶颈的方法. 它报告函数级别的请求次数和各种 ...
- 【前端】Vue.js经典开源项目汇总
Vue.js经典开源项目汇总 原文链接:http://www.cnblogs.com/huyong/p/6517949.html Vue是什么? Vue.js(读音 /vjuː/, 类似于 view) ...
- asm-3.3.1.jar详解 (转)
Java字节码操纵框架.它可以直接以二进制形式动态地生成stub类或其他代理类,或者在装载时动态地修改类.ASM提供类似于BCEL和SERP之类的工具包的功能,但是被设计得更小巧.更快速,这使它适用于 ...
- Commons Configuration之三Properties文件
转载自(https://my.oschina.net/u/2000201/blog/486653) Properties文件是流行的应用程序配置文件.当然,Commons Configuration支 ...
- win10家庭版的defender注册表关闭和开启
关闭方法: 打开“命令提示符(管理员)”,然后输入: reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows Defe ...
- 通过window(Navicat)访问linux中的mysql数据库
Centos安装Mysql数据库 查看我们的操作系统上是否已经安装了mysql数据库 [root@centos~]# rpm -qa | grep mysql // 这个命令就会查看该操作系统上是否已 ...