bzoj4034 树上操作
Description
Input
Output
对于每个询问操作,输出该询问的答案。答案之间用换行隔开。
Sample Input
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3
Sample Output
9
13
HINT
用树状数组+DFS序
我们先用一个树状数组维护每一个点(的DFS序)到根节点的值,对于第一个操作,如果把x这个点+k,相当于把以x为根的子树的所有点都加上k,因为这棵子树的DFS序是连续的,所以可以用树状数组维护。而对于第二个操作,讲x的个点和其子树都+k,我们可以先假设,如果只往根节点+k,那么查询每一个点时,就相当于加上了其深度depth*k。如果要往其他点+k,我们可以令开一个树状数组,维护以x为根节点的子树的+k,然后,答案就是第一个树状数组+(depth当前点-depthx)*第二课树状数组。但是,我们在查询时并不知道depthx是什么,因此,在第二个操作时,让第一颗树状数组减去(depthx-1)*k。
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#define REP(i,k,n) for(long long i=k;i<=n;i++)
#define in(a) a=read()
#define MAXN 100010
using namespace std;
inline long long read(){
long long x=,f=;
char ch=getchar();
for(;!isdigit(ch);ch=getchar())
if(ch=='-')
f=-;
for(;isdigit(ch);ch=getchar())
x=x*+ch-'';
return x*f;
}
queue <long long> Q;
long long n,m;
long long total=,head[MAXN],nxt[MAXN<<],to[MAXN<<];
long long l[MAXN],r[MAXN],depth[MAXN],dfn[MAXN],cnt;
long long tree[][MAXN<<];
long long arr[MAXN];
long long lowbit(long long k){
return k & -k;
}
inline void adl(long long a,long long b){
total++;
to[total]=b;
nxt[total]=head[a];
head[a]=total;
return ;
}
void dfs(long long u,long long fa){
dfn[u]=l[u]=++cnt;
for(long long e=head[u];e;e=nxt[e])
if(to[e]!=fa){
depth[to[e]]=depth[u]+;
dfs(to[e],u);
}
r[u]=cnt;
}
inline void add(long long f,long long s,long long k){
for(long long i=s;i<=n;i+=lowbit(i))
tree[f][i]+=k;
return ;
}
inline long long query(long long f,long long s){
long long sum=;
for(long long i=s;i;i-=lowbit(i))
sum+=tree[f][i];
return sum;
}
int main(){
in(n),in(m);
REP(i,,n)
in(arr[i]);
long long a,b;
REP(i,,n-)
in(a),in(b),adl(a,b),adl(b,a);
depth[]=;
dfs(,);
REP(i,,n)
add(,l[i],arr[i]),add(,r[i]+,-arr[i]);
long long pos,x;
REP(i,,m){
in(pos),in(a);
if(pos==) in(x),add(,l[a],x),add(,r[a]+,-x);
if(pos==) in(x),add(,l[a],x),add(,r[a]+,-x),add(,l[a],-x*(depth[a]-)),add(,r[a]+,x*(depth[a]-));
if(pos==) printf("%lld\n",query(,l[a])*depth[a]+query(,l[a]));
}
return ;
}
/*
5 5
1 2
1 4
2 3
2 5
*/
bzoj4034 树上操作的更多相关文章
- bzoj4034 树上操作 树链剖分+线段树
题目传送门 题目大意: 有一棵点数为 N 的树,以点 1 为根,且树点有权.然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有 ...
- 【BZOJ4034】[HAOI2015]树上操作 树链剖分+线段树
[BZOJ4034][HAOI2015]树上操作 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 ...
- bzoj千题计划242:bzoj4034: [HAOI2015]树上操作
http://www.lydsy.com/JudgeOnline/problem.php?id=4034 dfs序,树链剖分 #include<cstdio> #include<io ...
- bzoj4034[HAOI2015]树上操作 树链剖分+线段树
4034: [HAOI2015]树上操作 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 6163 Solved: 2025[Submit][Stat ...
- 树剖||树链剖分||线段树||BZOJ4034||Luogu3178||[HAOI2015]树上操作
题面:P3178 [HAOI2015]树上操作 好像其他人都嫌这道题太容易了懒得讲,好吧那我讲. 题解:第一个操作和第二个操作本质上是一样的,所以可以合并.唯一值得讲的点就是:第二个操作要求把某个节点 ...
- bzoj4034: [HAOI2015]树上操作(树剖)
4034: [HAOI2015]树上操作 题目:传送门 题解: 树剖裸题: 麻烦一点的就只有子树修改(其实一点也不),因为子树编号连续啊,直接改段(记录编号最小和最大) 开个long long 水模版 ...
- HAOI2015 树上操作
HAOI2015 树上操作 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根 ...
- P3178 [HAOI2015]树上操作
P3178 [HAOI2015]树上操作 思路 板子嘛,其实我感觉树剖没啥脑子 就是debug 代码 #include <bits/stdc++.h> #define int long l ...
- bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树
4034: [HAOI2015]树上操作 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4352 Solved: 1387[Submit][Stat ...
随机推荐
- 用js拼接url为pathinfo模式
用js拼接url为pathinfo模式
- 35 - 并发编程-GIL-多进程
目录 1 GIL 1.1 为什么会有GIL 1.2 GIL与thread lock 1.3 个人总结 2 multiprocessing模块 2.1 Process类 2.2 Process类的方法 ...
- Opencv 配置VS2012
开始接触图像处理有一段时间了,经过前期的调研,和相关入门知识的学习,开始接触一些图像处理应用的工具.Opencv是一个图像处理的开源库,由于其开放的协议架构,国内外很多科研机构和团队都在基于openc ...
- USB各种模式 解释
1.MTP: 通过MTP这种技术,可以把音乐传到手机里.有了U盘功能为什么还要多此一举呢?因为版权问题,MTP可以把权限文件从电脑上导过去:如果只使用手机的U盘功能,把歌的文件拷过去之后,没有权限文件 ...
- 【技术分享】ReBreakCaptcha:利用谷歌来破解谷歌的验证码
概述 从2016年开始,我就在琢磨寻找一种新的绕过谷歌验证码v2的方法会有多难,如果这种方法能够适用于任何环境而不仅仅是针对特定的案例,那这种方法将是非常理想的.接下来我将向你介绍ReBreakCap ...
- C++中stringstream样例
包含头文件 #include <sstream> 初始化可以使用 clear(). str( ) 赋值: 这里的clear方法,实际上是清空stringstream的状态(比如出错等),清 ...
- python多线程下载文件
从文件中读取图片url和名称,将url中的文件下载下来.文件中每一行包含一个url和文件名,用制表符隔开. 1.使用requests请求url并下载文件 def download(img_url, i ...
- MyBatis3-与Spring MVC 4集成
继前一篇的例子http://www.cnblogs.com/EasonJim/p/7052388.html,已经集成了Spring框架,现在将改造成Spring MVC的项目,并实现如下功能: 1.不 ...
- day4 迭代器与生成器解析
一.迭代器 迭代器是访问集合元素的一种方式.其实迭代器就是一种列表,只是访问集合元素的时候比较特殊,具有一些特定功能,记忆功能,能够记住用户上一次的状态.迭代器是访问集合元素的一种方式.并且,迭代器只 ...
- DotNetOpenAuth实践之Webform资源服务器配置
系列目录: DotNetOpenAuth实践系列(源码在这里) 上篇我们讲到WebApi资源服务器配置,这篇我们说一下Webform下的ashx,aspx做的接口如何使用OAuth2认证 一.环境搭建 ...